Influence of Cross-Laminated Timber Floor and Their Connections on the Robustness of Mass-Timber Building: A Case Study on Midrise Building

被引:2
|
作者
Ponnampalam, Thusiyanthan [1 ]
Navaratnam, Satheeskumar [2 ]
Thamboo, Julian [3 ]
Zhang, Guomin [4 ]
机构
[1] Ronnie & Koh Consultants Pte Ltd, 28 Sin Ming Ln, Singapore 573972, Singapore
[2] RMIT Univ, Melbourne, Vic 3000, Australia
[3] South Eastern Univ Sri Lanka, Dept Civil Engn, Oluvil 32360, Sri Lanka
[4] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
关键词
Mass-timber building; Cross-laminated timber; Robustness; Progressive collapse; Glue-in-rod connection; PROGRESSIVE COLLAPSE; BEAM; CLT; STIFFNESS; FRAMES;
D O I
10.1061/JPCFEV.CFENG-4589
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Mass-timber construction is becoming more prevalent in Australia and around the world. However, as these mass-timber buildings become taller, it is important to consider robust detailing against accidental damages to major load-bearing elements and thereby avoid potential progressive collapse scenarios. In order to better understand the robustness of typical mass-timber buildings, this study analyzed a typical 10-story midrise mass-timber building subjected to different progressive collapse scenarios. A scenario-independent approach was considered in the analysis, which includes the sudden removal of a load-bearing glulam column from the midrise mass-timber building. It was observed that when internal ties and bracings were provided, the robustness of the building was not affected as there was an alternative load path created. The orthogonal tie beam and diagonal bracing can transfer about 60% and 20% of the axial loads of the removed column to the adjacent columns, respectively. It was found that the building becomes vulnerable when no internal tie or bracing is available to transfer the accidental load. In this scenario, higher stiffness of the cross-laminated timber panel-to-panel joint can be adopted to improve the robustness of mass-timber building.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Dynamic properties of cross-laminated timber and timber truss building systems
    Edskar, Ida
    Lidelow, Helena
    ENGINEERING STRUCTURES, 2019, 186 : 525 - 535
  • [2] On the uncertainty of building acoustic measurements - Case study of a cross-laminated timber construction
    Oqvist, Rikard
    Ljunggren, Fredrik
    Agren, Anders
    APPLIED ACOUSTICS, 2012, 73 (09) : 904 - 912
  • [3] Ambient vibration tests of a cross-laminated timber building
    Reynolds, Thomas
    Harris, Richard
    Chang, Wen-Shao
    Bregulla, Julie
    Bawcombe, Jonathan
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2015, 168 (03) : 121 - 131
  • [4] AIRBORNE SOUND TRANSMISSION IN CROSS-LAMINATED TIMBER BUILDINGS: THE INFLUENCE OF BUILDING HEIGHT
    Nilsson, Erik
    Ménard, Sylvain
    Bard, Delphine
    Canadian Acoustics - Acoustique Canadienne, 2023, 51 (03): : 54 - 55
  • [5] Seismic Fragility Estimates for Cross-Laminated Timber Platform Building
    Shahnewaz, Md
    Pan, Yuxin
    Alam, M. Shahria
    Tannert, Thomas
    JOURNAL OF STRUCTURAL ENGINEERING, 2020, 146 (12)
  • [6] Is cross-laminated timber suitable for building structures to thirty levels?
    Chapman, J. B.
    STRUCTURES AND ARCHITECTURE: CONCEPTS: APPLICATIONS AND CHALLENGES, 2013, : 156 - 163
  • [7] Hygrothermal characterization and modeling of cross-laminated timber in the building envelope
    Kordziel, Steven
    Glass, Samuel V.
    Boardman, Charles R.
    Munson, Robert A.
    Zelinka, Samuel L.
    Pei, Shiling
    Tabares-Velasco, Paulo Cesar
    BUILDING AND ENVIRONMENT, 2020, 177 (177)
  • [8] Flexural Performance of Splice Connections in Cross-Laminated Timber
    Subhani, Mahbube
    Shill, Sukanta Kumer
    Al-Deen, Safat
    Anwar-Us-Saadat, Mohammad
    Ashraf, Mahmud
    BUILDINGS, 2022, 12 (08)
  • [9] Numerical Modeling of Connections with Screws in Cross-Laminated Timber
    Sejkot, Petr
    Iqbal, Asif
    PROCEEDINGS OF THE CANADIAN SOCIETY FOR CIVIL ENGINEERING ANNUAL CONFERENCE 2023, VOL 11, CSCE 2023, 2024, 505 : 287 - 298
  • [10] A seismic behavior and numerical model of narrow paneled cross-laminated timber building
    Sato, Motoshi
    Isoda, Hiroshi
    Araki, Yasuhiro
    Nakagawa, Takafumi
    Kawai, Naohito
    Miyake, Tatsuya
    ENGINEERING STRUCTURES, 2019, 179 : 9 - 22