Subcritical monotone cellular automata

被引:1
|
作者
Balister, Paul [1 ]
Bollobas, Bela [2 ,3 ]
Morris, Robert [4 ,6 ]
Smith, Paul [5 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Oxford, England
[2] Dept Pure Math & Math Stat, Cambridge, England
[3] Univ Memphis, Dept Math Sci, Memphis, TN USA
[4] IMPA, Rio De Janeiro, Brazil
[5] Clerkenwell, London, England
[6] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
基金
以色列科学基金会; 美国国家科学基金会; 欧洲研究理事会;
关键词
bootstrap percolation; cellular automata; universality; POLLUTED BOOTSTRAP PERCOLATION;
D O I
10.1002/rsa.21174
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study monotone cellular automata (also known as U-bootstrap percolation) in Z(d) with random initial configurations. Confirming a conjecture of Balister, Bollobas, Przykucki and Smith, who proved the corresponding result in two dimensions, we show that the critical probability is non-zero for all subcritical models.
引用
收藏
页码:38 / 61
页数:24
相关论文
共 50 条
  • [1] Monotone cellular automata
    Morris, Robert
    SURVEYS IN COMBINATORICS 2017, 2017, 440 : 312 - 371
  • [2] Monotone Cellular Automata in a Random Environment
    Bollobas, Bela
    Smith, Paul
    Uzzell, Andrew
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (04): : 687 - 722
  • [3] Communication complexity in number-conserving and monotone cellular automata
    Goles, E.
    Moreira, A.
    Rapaport, I.
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (29) : 3616 - 3628
  • [4] On conservative and monotone one-dimensional cellular automata and their particle representation
    Moreira, A
    Boccara, N
    Goles, E
    THEORETICAL COMPUTER SCIENCE, 2004, 325 (02) : 285 - 316
  • [5] Non-monotone cellular automata: Order prevails over chaos
    Ekstrom, Henrik
    Turova, Tatyana
    BIOSYSTEMS, 2022, 220
  • [6] Cellular Automata: Elementary Cellular Automata
    Bhardwaj, Rupali
    Upadhyay, Anil
    JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING, 2017, 29 (01) : 42 - 50
  • [7] Dimer automata and cellular automata
    Physica D, 4 (188):
  • [8] Dimer automata and cellular automata
    Schofisch, B
    Hadeler, KP
    PHYSICA D-NONLINEAR PHENOMENA, 1996, 94 (04) : 188 - 204
  • [9] Sand automata as cellular automata
    Dennunzio, Alberto
    Guillon, Pierre
    Masson, Beniot
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (38-40) : 3962 - 3974
  • [10] A simulation of cellular automata on hexagons by cellular automata on rings
    Martin, B
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 231 - 234