α-z-Renyi relative entropy related quantities and their preservers

被引:0
|
作者
Zhang, Ting [1 ]
Qi, Xiaofei [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
关键词
alpha-z-Renyi relative entropy; Positive trace-class operators; Infinite-dimensional Hilbert spaces; DENSITY SPACES; CAPACITY; STATES; MAPS;
D O I
10.1007/s43037-023-00248-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Various quantum relative entropies play important roles in classical and quantum information theory. In this paper, we generalize the definition of alpha-z-Renyi relative entropy from finite-dimensional quantum systems to infinite-dimensional quantum systems, give its some properties, and then determine the structure of all maps preserving alpha- z-Renyi relative entropy on positive trace-class operators. In addition, we also study alpha-z-Bures-Wasserstein divergences based on alpha-z-ernyi relative entropy on all positive trace-class operators, and give a complete characterization of all maps preserving alpha-z-Bures-Wasserstein divergences on the set of all positive trace-class operators and on the set of all positive invertible elements in a general C-*-algebra with a faithful finite trace, respectively.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] α-z-Renyi relative entropies
    Audenaert, Koenraad M. R.
    Datta, Nilanjana
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [2] BOLTZMANN ENTROPY, RELATIVE ENTROPY, AND RELATED QUANTITIES IN THERMODYNAMIC SPACE
    EU, BC
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (18): : 7169 - 7179
  • [3] Relative Renyi Entropy for Atoms
    Nagy, A.
    Romera, E.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (11) : 2490 - 2494
  • [4] A RELATIVE ReNYI OPERATOR ENTROPY
    Jeong, Miran
    Kim, Sejong
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (01): : 123 - 132
  • [5] Monotonicity of a relative Renyi entropy
    Frank, Rupert L.
    Lieb, Elliott H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [6] Quantifying the quantumness of ensembles via generalized α-z-relative renyi entropy
    Huang, Huaijing
    Wu, Zhaoqi
    Zhu, Chuanxi
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (07) : 2368 - 2379
  • [7] Quantifying quantum coherence based on the generalized α-z-relative Renyi entropy
    Zhu, Xue-Na
    Jin, Zhi-Xiang
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2019, 18 (06)
  • [8] α-z-Renyi Divergences in von Neumann Algebras: Data Processing Inequality, Reversibility, and Monotonicity Properties in α, z
    Hiai, Fumio
    Jencova, Anna
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (11)
  • [9] Relative Renyi entropy and fidelity susceptibility
    Nagy, A.
    Romera, E.
    EPL, 2015, 109 (06)
  • [10] Quantifying coherence of quantum channels based on the generalized α-z-relative Renyi entropy
    Fan, Jiaorui
    Wu, Zhaoqi
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2024, 23 (03)