rGO-Based Memristive Sensor for Rapid Hydrogen Detection at Room Temperature

被引:0
|
作者
Abuhamra, Nada [1 ]
Abunahla, Heba [2 ]
Ali, Ashraf [3 ]
Waheed, Waqas [4 ]
Mahmoud, Saleh T. [3 ]
Alazzam, Anas [4 ]
Mohammad, Baker [1 ]
机构
[1] Khalifa Univ Sci & Technol, Syst On Chip Ctr, Elect Engn & Comp Sci Dept, Abu Dhabi, U Arab Emirates
[2] Delft Univ Technol, Dept Quantum & Comp Engn, NL-2628 CD Delft, Netherlands
[3] United Arab Emirates Univ, Phys Dept, Abu Dhabi, U Arab Emirates
[4] Khalifa Univ Sci & Technol, Syst On Chip Ctr, Mech Engn Dept, Abu Dhabi, U Arab Emirates
关键词
Sensors; Temperature sensors; Voltage; Gas detectors; Hydrogen; Fabrication; Plasma temperature; Gas sensing; hydrogen sensor; memristor (MR); reduced graphene oxide (rGO); GRAPHENE OXIDE; GAS SENSORS; PERFORMANCE; SYSTEM;
D O I
10.1109/JSEN.2023.3328869
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, there has been a growing interest in investigating the potential of emerging memristor (MR) devices for gas sensing applications, particularly at room temperature. This article reports on a planar Au/reduced graphene oxide (rGO)/Au memristive hydrogen sensor, fabricated on a cost-effective cyclic olefin copolymer (COC) substrate, and utilizing the rGO green carbon material as its active sensing element. The sensor's performance is evaluated using two different testing modes: conventional chemiresistive testing under a constant voltage bias (CVB) and voltage pulse (VP) modes. The CVB mode demonstrates high repeatability, selectivity, response time, and recovery time, indicating the sensor's reliable gas sensing capabilities. In addition, the VP mode significantly enhances the sensor's relative percentage response, indicating its potential for improved gas sensing performance. To optimize the sensor's response, the impact of hydrogen exposure on the MR resistive switching is studied, revealing that the effect is contingent on the VP amplitude. Specifically, gas-enhanced resistive switching is achieved at lower voltage levels, whereas at higher voltage levels, gas exposure slows down the rate of resistive switching. Consequently, voltage-pulse testing is conducted at two voltage magnitudes, low (2.5 V) and high (4.5 V), and the sensor's response is enhanced from 0.5% under CVB mode to 786% under VP mode.
引用
收藏
页码:30093 / 30101
页数:9
相关论文
共 50 条
  • [1] Room temperature gas sensor based on rGO/Bi 2 S 3 heterostructures for ultrasensitive and rapid NO 2 detection
    Yang, Yongchao
    Zhu, Ming
    Zhang, Hui
    Wang, Bo
    Chen, Cunguang
    Li, Jiayu
    Wang, You
    Hao, Juanyuan
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [2] Memristive Gas Sensor Based on TiO2 Nanosheets for Triethylamine Detection at Room Temperature
    Qiu, Peilun
    Hu, Chuqiao
    Liu, Jianqiao
    Fu, Ce
    ACS APPLIED NANO MATERIALS, 2025, 8 (08) : 4077 - 4086
  • [3] A rapid response room temperature hydrogen sensor based on a three-dimensional Pd-In2O3/rGO aerogel
    Chen, Chunyan
    Liu, Yuheng
    Zhou, Jian
    He, Xuehu
    Chen, Chunlin
    Xiao, Guoqing
    Tang, Yaling
    Chen, Wanxin
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (13) : 5866 - 5876
  • [4] Flexible gas sensor based on rGO-ZnO for NO2 detection at room temperature
    Komorizono, Amanda Akemy
    Leite, Ramon Resende
    de la Flor, Silvia
    Llobet, Eduard
    Mastelaro, Valmor Roberto
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 188
  • [5] Gas sensor based on rGO/ZnO aerogel for efficient detection of NO2 at room temperature
    Huijun Gao
    Yuzhen Ma
    Peng Song
    Jinfeng Leng
    Qi Wang
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 10058 - 10069
  • [6] Gas sensor based on rGO/ZnO aerogel for efficient detection of NO2 at room temperature
    Gao, Huijun
    Ma, Yuzhen
    Song, Peng
    Leng, Jinfeng
    Wang, Qi
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (08) : 10058 - 10069
  • [7] Electrochemical Sensor for Hydrogen Leakage Detection at Room Temperature
    Rimbu, Gimi Aurelian
    Pislaru-Danescu, Lucian
    Zarnescu, George-Claudiu
    Stefanescu, Carmen Alina
    Iordoc, Mihai
    Teisanu, Aristofan Alexandru
    Telipan, Gabriela
    SENSORS, 2025, 25 (01)
  • [8] Room Temperature Detection of Hydrogen Gas Using Graphene Based Conductometric Gas Sensor
    Pavithra, A.
    Rakkesh, R. Ajay
    Durgalakshmi, D.
    Balakumar, S.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (05) : 3449 - 3453
  • [9] Synergy of Two Intermolecular Hydrogen Bonds Promotes Highly Sensitive and Selective Room-Temperature Dimethyl Methylphosphonate Sensing: A Case of rGO-Based Gas Sensors
    Yang, Zhimin
    Wei, Zefeng
    Xing, Yunpeng
    Zhao, Liang
    Zhang, Yaqing
    Xin, Congcong
    Fei, Teng
    Liu, Sen
    Zhang, Tong
    LANGMUIR, 2023, 39 (31) : 10935 - 10946
  • [10] Highly efficient and stable NiSe2-rGO composite-based room temperature hydrogen gas sensor
    Motora, Kebena Gebeyehu
    Dileepkumar, V. G.
    Wu, Chang-Mou
    Ashwini, R.
    Chen, Guan-Ying
    Santosh, M. S.
    Kumar, Surender
    Kuo, Dong-Hau
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 (1174-1183) : 1174 - 1183