Selective butyric acid production from CO2 and its upgrade to butanol in microbial electrosynthesis cells

被引:14
|
作者
Romans-Casas, Meritxell [1 ]
Feliu-Paradeda, Laura [2 ]
Tedesco, Michele [3 ]
Hamelers, Hubertus V. M. [3 ]
Baneras, Lluis [2 ]
Balaguer, M. Dolors [1 ]
Puig, Sebastia [1 ]
Dessi, Paolo [1 ]
机构
[1] Univ Girona, Inst Environm, LEQUiA, Campus Montilivi,Carrer Maria Aurelia Capmany 69, E-17003 Girona, Spain
[2] Univ Girona, Inst Aquat Ecol, Mol Microbial Ecol Grp, Maria Aurelia Capmany 40, Girona 17003, Spain
[3] European Ctr Excellence Sustainable Water Technol, Wetsus, Oostergoweg 9, NL-8911 MA Leeuwarden, Netherlands
关键词
Biocathode; Bioelectrochemical system; Chain elongation; Hydrogen partial pressure; Megasphaera; CARBON-DIOXIDE; ALCOHOLS;
D O I
10.1016/j.ese.2023.100303
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial electrosynthesis (MES) is a promising carbon utilization technology, but the low-value products (i.e., acetate or methane) and the high electric power demand hinder its industrial adoption. In this study, electrically efficient MES cells with a low ohmic resistance of 15.7 mU m2 were operated galvanostatically in fed-batch mode, alternating periods of high CO2 and H2 availability. This promoted acetic acid and ethanol production, ultimately triggering selective (78% on a carbon basis) butyric acid pro-duction via chain elongation. An average production rate of 14.5 g m-2 d-1 was obtained at an applied current of 1.0 or 1.5 mA cm-2, being Megasphaera sp. the key chain elongating player. Inoculating a second cell with the catholyte containing the enriched community resulted in butyric acid production at the same rate as the previous cell, but the lag phase was reduced by 82%. Furthermore, interrupting the CO2 feeding and setting a constant pH2 of 1.7-1.8 atm in the cathode compartment triggered solventogenic butanol production at a pH below 4.8. The efficient cell design resulted in average cell voltages of 2.6-2.8 V and a remarkably low electric energy requirement of 34.6 kWhel kg-1 of butyric acid produced, despite coulombic efficiencies being restricted to 45% due to the cross-over of O2 and H2 through the membrane. In conclusion, this study revealed the optimal operating conditions to achieve energy-efficient butyric acid production from CO2 and suggested a strategy to further upgrade it to valuable butanol.& COPY; 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO2 and CO
    Christodoulou, Xenia
    Velasquez-Orta, Sharon B.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (20) : 11234 - 11242
  • [2] Integrated Production, Extraction, and Concentration of Acetic Acid from CO2 through Microbial Electrosynthesis
    Gildemyn, Sylvia
    Verbeeck, Kristof
    Slabbinck, Rik
    Andersen, Stephen J.
    Prevoteau, Antonin
    Rabaey, Korneel
    ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2015, 2 (11): : 325 - 328
  • [3] Efficient production of lycopene from CO2 via microbial electrosynthesis
    Wu, Haoliang
    Pan, Haojie
    Li, Zhongjian
    Liu, Tengfei
    Liu, Folin
    Xiu, Siyuan
    Wang, Jia
    Wang, Hanqing
    Hou, Yang
    Yang, Bin
    Lei, Lecheng
    Lian, Jiazhang
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [4] Food production in space from CO2 using microbial electrosynthesis
    Alvarado, Kyle A.
    Martinez, Juan B. Garcia
    Brown, Michael M.
    Christodoulou, Xenia
    Bryson, Scot
    Denkenberger, David C.
    BIOELECTROCHEMISTRY, 2023, 149
  • [5] Efficient production of lycopene from CO2 via microbial electrosynthesis
    Wu, Haoliang
    Pan, Haojie
    Li, Zhongjian
    Liu, Tengfei
    Liu, Folin
    Xiu, Siyuan
    Wang, Jia
    Wang, Hanqing
    Hou, Yang
    Yang, Bin
    Lei, Lecheng
    Lian, Jiazhang
    Chemical Engineering Journal, 2022, 430
  • [6] Bioplastic Production from the Microbial Electrosynthesis of Acetate through CO2 Reduction
    Zhang, Kang
    Zhou, Yonghang
    Song, Tianshun
    Xie, Jingjing
    ENERGY & FUELS, 2021, 35 (19) : 15978 - 15986
  • [7] Production of organics from CO2 by microbial electrosynthesis (MES) at high temperature
    Faraghiparapari, Neda
    Zengler, Karsten
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2017, 92 (02) : 375 - 381
  • [8] Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture
    Batlle-Vilanova, Pau
    Puig, Sebastia
    Gonzalez-Olmos, Rafael
    Dolors Balaguer, Maria
    Colprim, Jesus
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2016, 91 (04) : 921 - 927
  • [9] Microbial electrosynthesis from CO2: forever a promise?
    Prevoteau, Antonin
    Carvajal-Arroyo, Jose M.
    Ganigue, Ramon
    Rabaey, Korneel
    CURRENT OPINION IN BIOTECHNOLOGY, 2020, 62 : 48 - 57
  • [10] Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO2
    Patil, Sunil A.
    Arends, Jan B. A.
    Vanwonterghem, Inka
    van Meerbergen, Jarne
    Guo, Kun
    Tyson, Gene W.
    Rabaey, Korneel
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (14) : 8833 - 8843