A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme

被引:8
|
作者
Hutton, Amy E. [1 ]
Foster, Jake [1 ]
Crawshaw, Rebecca [1 ]
Hardy, Florence J. [1 ]
Johannissen, Linus O. [1 ]
Lister, Thomas M. [1 ]
Gerard, Emilie F. [1 ]
Birch-Price, Zachary [1 ]
Obexer, Richard [1 ]
Hay, Sam [1 ]
Green, Anthony P. [1 ]
机构
[1] Univ Manchester, Manchester Inst Biotechnol, Sch Chem, Manchester, England
基金
欧盟地平线“2020”; 英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
BAYLIS-HILLMAN REACTION; COMPUTATIONAL DESIGN; EVOLUTION; CATALYSTS; PROTEINS; ENONES; CHAIN;
D O I
10.1038/s41467-024-46123-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Directed evolution of computationally designed enzymes has provided new insights into the emergence of sophisticated catalytic sites in proteins. In this regard, we have recently shown that a histidine nucleophile and a flexible arginine can work in synergy to accelerate the Morita-Baylis-Hillman (MBH) reaction with unrivalled efficiency. Here, we show that replacing the catalytic histidine with a non-canonical N delta-methylhistidine (MeHis23) nucleophile leads to a substantially altered evolutionary outcome in which the catalytic Arg124 has been abandoned. Instead, Glu26 has emerged, which mediates a rate-limiting proton transfer step to deliver an enzyme (BHMeHis1.8) that is more than an order of magnitude more active than our earlier MBHase. Interestingly, although MeHis23 to His substitution in BHMeHis1.8 reduces activity by 4-fold, the resulting His containing variant is still a potent MBH biocatalyst. However, analysis of the BHMeHis1.8 evolutionary trajectory reveals that the MeHis nucleophile was crucial in the early stages of engineering to unlock the new mechanistic pathway. This study demonstrates how even subtle perturbations to key catalytic elements of designed enzymes can lead to vastly different evolutionary outcomes, resulting in new mechanistic solutions to complex chemical transformations. The authors previously showed that a histidine nucleophile and a flexible arginine can work in synergy to accelerate the Morita Baylis-Hillman (MBH) reaction. Here, they report another efficient MBHase that employs a non-canonical N delta-methylhistidine nucleophile paired with a catalytic glutamate, providing an alternative mechanistic solution for MBH catalysis.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme
    Amy E. Hutton
    Jake Foster
    Rebecca Crawshaw
    Florence J. Hardy
    Linus O. Johannissen
    Thomas M. Lister
    Emilie F. Gérard
    Zachary Birch-Price
    Richard Obexer
    Sam Hay
    Anthony P. Green
    Nature Communications, 15
  • [2] Mechanistic studies of non-canonical amino acid mutagenesis
    Fleisher, Rachel C.
    Michael, Nina
    Gonzalez, Ruben L., Jr.
    SYNTHETIC AND ENZYMATIC MODIFICATIONS OF THE PEPTIDE BACKBONE, 2021, 656 : 375 - 428
  • [3] Canonical and non-canonical pathway of unfolded protein response signaling
    Banerjee, Dipak
    Banerjee, Aditi
    Santiago, Jesus
    Longas, Maria
    Baksi, Krishna
    FASEB JOURNAL, 2014, 28 (01):
  • [4] Mechanistic insights into G-protein activation via phosphorylation mediated non-canonical pathway
    Shewani, Kunal
    Madhu, Midhun K.
    Murarka, Rajesh K.
    BIOPHYSICAL CHEMISTRY, 2024, 309
  • [5] A non-canonical mismatch repair pathway in prokaryotes
    A. Castañeda-García
    A. I. Prieto
    J. Rodríguez-Beltrán
    N. Alonso
    D. Cantillon
    C. Costas
    L. Pérez-Lago
    E. D. Zegeye
    M. Herranz
    P. Plociński
    T. Tonjum
    D. García de Viedma
    M. Paget
    S. J. Waddell
    A. M. Rojas
    A. J. Doherty
    J. Blázquez
    Nature Communications, 8
  • [6] A non-canonical pathway for computing odor identity
    Albeanu, Dinu F.
    Chae, Honggoo
    Banerjee, Arkarup
    Dussauze, Marie
    CHEMICAL SENSES, 2022, 47
  • [7] A non-canonical mismatch repair pathway in prokaryotes
    Castaneda-Garcia, A.
    Prieto, A. I.
    Rodriguez-Beltran, J.
    Alonso, N.
    Cantillon, D.
    Costas, C.
    Perez-Lago, L.
    Zegeye, E. D.
    Herranz, M.
    Plocinski, P.
    Tonjum, T.
    Garcia de Viedma, D.
    Paget, M.
    Waddell, S. J.
    Rojas, A. M.
    Doherty, A. J.
    Blazquez, J.
    Nature Communications, 2017, 8
  • [8] New editions of non-canonical gospels
    Gregory, Andrew
    Tuckett, Christopher
    THEOLOGY, 2008, 111 (861) : 178 - 184
  • [9] A new non-canonical pathway of G(q) protein regulating mitochondrial dynamics
    Izquierdo, I.
    Izquierdo, I.
    Andreu, M.
    Beninca, C.
    Izquierdo, J. A.
    Aragay, A. M.
    FEBS JOURNAL, 2016, 283 : 68 - 68
  • [10] Design and evolution of an enzyme with a non-canonical organocatalytic mechanism
    Ashleigh J. Burke
    Sarah L. Lovelock
    Amina Frese
    Rebecca Crawshaw
    Mary Ortmayer
    Mark Dunstan
    Colin Levy
    Anthony P. Green
    Nature, 2019, 570 : 219 - 223