On minimality and scalar curvature of CMC triharmonic hypersurfaces in pseudo-Riemannian space forms

被引:0
|
作者
Du, Li [1 ]
Luo, Yong [2 ]
机构
[1] Chongqing Univ Technol, Sch Sci, Chongqing, Peoples R China
[2] Chongqing Univ Technol, Math Sci Res Ctr, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Pseudo-Riemannian space forms; Triharmonic maps; Hypersurfaces; Constant mean curvature; Diagonalizable shape operator; LIOUVILLE-TYPE THEOREMS; BIHARMONIC HYPERSURFACES; CLASSIFICATION; SUBMANIFOLDS; NONEXISTENCE; MAPS;
D O I
10.1007/s10231-023-01422-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first study the minimality of triharmonic hypersurfaces with constant mean curvature in pseudo-Riemannian space forms under the assumption that the shape operator is diagonalizable. Then, we prove that such nonminimal hypersurfaces have constant scalar curvature. As its applications, we estimate the constant scalar curvature and the constant mean curvature.
引用
收藏
页码:1793 / 1808
页数:16
相关论文
共 50 条