Mutant huntingtin confers cell-autonomous phenotypes on Huntington's disease iPSC-derived microglia

被引:5
|
作者
Stoeberl, Nina [1 ]
Donaldson, Jasmine [2 ]
Binda, Caroline S. [2 ]
Mcallister, Branduff [2 ]
Hall-Roberts, Hazel [3 ]
Jones, Lesley [2 ]
Massey, Thomas H. [2 ]
Allen, Nicholas D. [1 ]
机构
[1] Cardiff Univ, Sch Biosci, Cardiff, Wales
[2] Cardiff Univ, Ctr Neuropsychiat Genet & Genom, Div Psychol Med & Clin Neurosci, Cardiff, Wales
[3] Cardiff Univ, UK Dementia Res Inst Cardiff, Cardiff, Wales
基金
英国惠康基金; 欧盟地平线“2020”;
关键词
CENTRAL-NERVOUS-SYSTEM; GENE CORRECTION; CAG EXPANSION; COPY NUMBER; ACTIVATION; EXPRESSION; CLATHRIN; COMPLEX; CULTURE; LENGTH;
D O I
10.1038/s41598-023-46852-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominantly inherited CAG repeat expansion in the huntingtin gene (HTT). Neuroinflammation and microglia have been implicated in HD pathology, however it has been unclear if mutant HTT (mHTT) expression has an adverse cell-autonomous effect on microglial function, or if they are only activated in response to the neurodegenerative brain environment in HD. To establish a human cell model of HD microglia function, we generated isogenic controls for HD patient-derived induced pluripotent stem cells (iPSC) with 109 CAG repeats (Q109). Q109 and isogenic Q22 iPSC, as well as non-isogenic Q60 and Q33 iPSC lines, were differentiated to iPSC-microglia. Our study supports a model of basal microglia dysfunction in HD leading to elevated pro-inflammatory cytokine production together with impaired phagocytosis and endocytosis capacity, in the absence of immune stimulation. These findings are consistent with early microglia activation observed in pre-manifest patients and indicate that mHTT gene expression affects microglia function in a cell-autonomous way.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Mutant huntingtin confers cell-autonomous phenotypes on Huntington’s disease iPSC-derived microglia
    Nina Stöberl
    Jasmine Donaldson
    Caroline S. Binda
    Branduff McAllister
    Hazel Hall-Roberts
    Lesley Jones
    Thomas H. Massey
    Nicholas D. Allen
    Scientific Reports, 13
  • [2] CryoET reveals organelle phenotypes in huntington disease patient iPSC-derived and mouse primary neurons
    Wu, Gong-Her
    Smith-Geater, Charlene
    Galaz-Montoya, Jesus G.
    Gu, Yingli
    Gupte, Sanket R. R.
    Aviner, Ranen
    Mitchell, Patrick G. G.
    Hsu, Joy
    Miramontes, Ricardo
    Wang, Keona Q. Q.
    Geller, Nicolette R. R.
    Hou, Cathy
    Danita, Cristina
    Joubert, Lydia-Marie
    Schmid, Michael F. F.
    Yeung, Serena
    Frydman, Judith
    Mobley, William
    Wu, Chengbiao
    Thompson, Leslie M. M.
    Chiu, Wah
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] CryoET reveals organelle phenotypes in huntington disease patient iPSC-derived and mouse primary neurons
    Gong-Her Wu
    Charlene Smith-Geater
    Jesús G. Galaz-Montoya
    Yingli Gu
    Sanket R. Gupte
    Ranen Aviner
    Patrick G. Mitchell
    Joy Hsu
    Ricardo Miramontes
    Keona Q. Wang
    Nicolette R. Geller
    Cathy Hou
    Cristina Danita
    Lydia-Marie Joubert
    Michael F. Schmid
    Serena Yeung
    Judith Frydman
    William Mobley
    Chengbiao Wu
    Leslie M. Thompson
    Wah Chiu
    Nature Communications, 14
  • [4] Cell-autonomous immune dysfunction driven by disrupted autophagy in C9orf72-ALS iPSC-derived microglia contributes to neurodegeneration
    Banerjee, Poulomi
    Mehta, Arpan R.
    Nirujogi, Raja S.
    Cooper, James
    James, Owen G.
    Nanda, Jyoti
    Longden, James
    Burr, Karen
    McDade, Karina
    Salzinger, Andrea
    Paza, Evdokia
    Newton, Judith
    Story, David
    Pal, Suvankar
    Smith, Colin
    Alessi, Dario R.
    Selvaraj, Bhuvaneish T.
    Priller, Josef
    Chandran, Siddharthan
    SCIENCE ADVANCES, 2023, 9 (16)
  • [5] Cell-autonomous lipid-handling defects in Stargardt iPSC-derived retinal pigment epithelium cells
    Farnoodian, Mitra
    Bose, Devika
    Khristov, Vladimir
    Susaimanickam, Praveen Joseph
    Maddileti, Savitri
    Mariappan, Indumathi
    Abu-Asab, Mones
    Campos, Maria
    Villasmil, Rafael
    Wan, Qin
    Maminishkis, Arvydas
    McGaughey, David
    Barone, Francesca
    Gundry, Rebekah L.
    Riordon, Daniel R.
    Boheler, Kenneth R.
    Sharma, Ruchi
    Bharti, Kapil
    STEM CELL REPORTS, 2022, 17 (11): : 2438 - 2450
  • [6] iPSC-Derived Microglia as a Model to Study Inflammation in Idiopathic Parkinson's Disease
    Badanjak, Katja
    Mulica, Patrycja
    Smajic, Semra
    Delcambre, Sylvie
    Tranchevent, Leon-Charles
    Diederich, Nico
    Rauen, Thomas
    Schwamborn, Jens C.
    Glaab, Enrico
    Cowley, Sally A.
    Antony, Paul M. A.
    Pereira, Sandro L.
    Venegas, Carmen
    Gruenewald, Anne
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [7] Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys
    Cho, In Ki
    Yang, Bo
    Forest, Craig
    Qian, Lu
    Chan, Anthony W. S.
    PLOS ONE, 2019, 14 (03):
  • [8] Human iPSC-derived microglia - a model for neuronopathic Gaucher Disease
    Tampe, J. F.
    Crowe, J. A.
    Kokaia, Z.
    Canals, I.
    GLIA, 2023, 71 : E944 - E944
  • [9] iPSC-derived Microglia for Disease Modeling of Frontotemporal Dementia 3
    Haukedal, H.
    Freude, K.
    Garcia, B. Aldana
    Corsi, G.
    Gadekar, V.
    Gorodkin, J.
    GLIA, 2021, 69 : E480 - E481
  • [10] In vivo progressive degeneration of Huntington's disease patient iPSC-derived neurons reveals human-specific pathological phenotypes
    Miguez, A.
    Fernandez-Garcia, S.
    Monguio-Tortajada, M.
    Bombau, G.
    Galofre, M.
    Garcia-Bravo, M.
    Vila, C.
    Sanders, P.
    Roura, S.
    Alberch, J.
    Segovia, J. C.
    Allen, N. D.
    Borras, F. E.
    Canals, J. M.
    HUMAN GENE THERAPY, 2019, 30 (11) : A122 - A122