The Sharp Distortion Estimate Concerning Julia's Lemma

被引:1
|
作者
Hoshinaga, Shota [1 ]
Yanagihara, Hiroshi [1 ]
机构
[1] Yamaguchi Univ, Fac Engn, Dept Appl Sci, Tokiwadai, Ube 7558611, Japan
关键词
Julia's lemma; Distortion estimate; Variability region;
D O I
10.1007/s40315-023-00505-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For alpha > 0, let J(alpha) be the class of all analytic functions f in the unit disk D := {z is an element of C : vertical bar z vertical bar < 1} satisfying f (D) subset of D with the the angular derivative angle lim(z -> 1) f(z) - 1/z - 1 = alpha. For a, z is an element of D, let k(z) = vertical bar 1 - z vertical bar(2)/1 - vertical bar z vertical bar(2) and sigma(a)(z) = 1 - <(a)over bar>/1 - a z - a/1 - (a) over barz. Let z(0) is an element of D be fixed. For f is an element of J(alpha), we obtain the sharp estimate vertical bar f'(z(0))vertical bar <= 4 alpha k(z(0))(2)/(alpha k(z(0)) + 1)(2)vertical bar 1 - z(0)vertical bar(2) when alpha k(z(0)) <= 1. with equality if and only if f = sigma(-1)(w0) omicron sigma(z0). Here w(0) = (1- alpha k(z(0)))/(alpha k(z(0))+ 1). In case of alpha k(z(0)) > 1 we derive the estimate vertical bar f'(z(0))vertical bar <= k(z(0))/vertical bar 1 - z(0)vertical bar(2). It is also sharp, however in contrast to the former case, there are no extremal functions in J(alpha). The lack of extremal functions is caused by the fact that J(alpha) is not closed in the topology of local uniform convergence in D. Thus we consider the closure (J) over bar (alpha) a of J(alpha) and study (V) over bar (1)(z(0), alpha) := {f' (z(0)) : f. (J) over bar (alpha)} which is the variability region of f' (z(0)) when f ranges over (J) over bar (alpha). We shall show that partial derivative(V) over bar (z(0), alpha) is a simple closed curve and (V) over bar (z(0), alpha) is a convex and closed Jordan domain enclosed by partial derivative(V) over bar (z(0), alpha). Moreover, we shall give a parametric representation of partial derivative(V) over bar (z(0), alpha) and determine all extremal functions.
引用
收藏
页码:53 / 82
页数:30
相关论文
共 50 条
  • [1] The Sharp Distortion Estimate Concerning Julia’s Lemma
    Shota Hoshinaga
    Hiroshi Yanagihara
    Computational Methods and Function Theory, 2024, 24 : 53 - 82
  • [2] A NOTE CONCERNING THE LEMMA OF JULIA-WOLFF-CARATHEODORY
    HEINS, M
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1989, 14 (01): : 133 - 136
  • [3] JULIA'S LEMMA ON THE HYPERBOLIC DISK
    Baricz, Arpad
    Ponnusamy, Sarninathan
    Varga, Csaba
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) : 939 - 948
  • [4] Julia’s lemma and bloch constants
    Huaihui Chen
    Chengji Xiong
    Science in China Series A: Mathematics, 2003, 46 (3): : 326 - 332
  • [5] Julia's lemma and Bloch constants
    Chen, HH
    Xiong, CJ
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (03): : 326 - 332
  • [6] Julia's lemma and Bloch constants
    陈怀惠
    熊成继
    Science China Mathematics, 2003, (03) : 326 - 332
  • [7] JULIA'S LEMMA FOR ANALYTIC OPERATOR FUNCTIONS
    陶志光
    Chinese Annals of Mathematics, 1988, (02) : 156 - 160
  • [8] SHARP DISTORTION ESTIMATE FOR LOCALLY SCHLICHT BLOCH FUNCTIONS
    YANAGIHARA, H
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 539 - 542
  • [9] Sharp Mei's Lemma with Different Bases
    Anderson, Theresa C.
    Hu, Bingyang
    RESULTS IN MATHEMATICS, 2022, 77 (02)
  • [10] Sharp Mei’s Lemma with Different Bases
    Theresa C. Anderson
    Bingyang Hu
    Results in Mathematics, 2022, 77