Short-Term Load Forecasting Based on Data Decomposition and Dynamic Correlation

被引:0
|
作者
Wang, Min [1 ]
Zuo, Fanglin [1 ]
Wu, Chao [1 ]
Yu, Zixuan [1 ]
Chen, Yuan [1 ]
Wang, Huilin [1 ]
机构
[1] Hohai Univ, Coll Energy & Elect Engn, Nanjing 210098, Peoples R China
关键词
Correlation; Time series analysis; Load modeling; Predictive models; Power system dynamics; Data models; Market research; Empirical mode decomposition; Load forecasting; Time-dependent intrinsic cross-correlation; empirical mode decomposition; short-term load forecasting; temporal pattern attention mechanism; EMPIRICAL MODE DECOMPOSITION; FEATURE-SELECTION; MONSOON RAINFALL; INDIA;
D O I
10.1109/ACCESS.2023.3319553
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The load in the power grid is often affected by many factors, and the coupling relationship among them changes dynamically with time. This study proposed a short-term load forecasting technique based on time pattern attention and a long short-term memory network considering time-dependent intrinsic cross-correlation (TDICC) for smart grids with massive amounts of data. Based on source-load dynamic correlation analysis, The proposed TDICC to track and correct the multi-timescale dynamic correlation of two signal overruns or lags, which realizes the transformation of correlation description from two-dimensional space to three-dimensional space and expands its ability to describe multi-timescale dynamic correlation. Finally, the actual load data are used for example analysis, and the results show that the proposed method can tap the dynamic correlation between multiple influencing factors and load and has higher prediction accuracy compared with other models, which provides a more accurate database for power system dispatching.
引用
收藏
页码:107297 / 107308
页数:12
相关论文
共 50 条
  • [1] Load Forecasting Based on Short-term Correlation Clustering
    Tao, Shun
    Li, Yongtong
    Xiao, Xiangning
    Yao, Liting
    2017 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT-ASIA), 2017, : 583 - 589
  • [2] Short-term Load Forecasting Based on Data Mining
    Yang, Hu-Ping
    Wang, Hua
    Yan, Fei-Fei
    Zhang, Li
    2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2016, : 170 - 173
  • [3] Short-term Load Forecasting Method Based on Empirical Mode Decomposition and Feature Correlation Analysis
    Kong X.
    Li C.
    Zheng F.
    Yu L.
    Ma X.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (05): : 46 - 52
  • [4] Short-term Load Forecasting Based on Load Decomposition and Numerical Weather Forecast
    Lu Qiuyu
    Cai Qiuna
    Liu Sijie
    Yang Yun
    Yan Binjie
    Wang Yang
    Zhou Xinsheng
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [5] Short-term electrical load forecasting based on error correction using dynamic mode decomposition
    Kong, Xiangyu
    Li, Chuang
    Wang, Chengshan
    Zhang, Yusen
    Zhang, Jian
    APPLIED ENERGY, 2020, 261 (261)
  • [6] Short-term Load Forecasting Based on Aggregated Secondary Decomposition and Informer
    Shi Z.
    Ran Q.
    Xu F.
    Dianwang Jishu/Power System Technology, 2024, 48 (06): : 2574 - 2583
  • [7] Short-term power load forecasting based on big data
    State Grid Information & Telecommunication Branch, Xicheng District, Beijing
    100761, China
    不详
    100070, China
    不详
    100031, China
    Zhongguo Dianji Gongcheng Xuebao, 1 (37-42):
  • [8] Short-Term Load Forecasting Based on Big Data Technologies
    Zhang, Pei
    Wu, Xiaoyu
    Wang, Xiaojun
    Bi, Sheng
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2015, 1 (03): : 59 - 67
  • [9] Data mining for short-term load forecasting
    Mori, H
    Kosemura, N
    Kondo, T
    Numa, K
    2002 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2002, : 623 - 624
  • [10] Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach
    Yang, Dongchuan
    Guo, Ju-e
    Li, Yanzhao
    Sun, Shaolong
    Wang, Shouyang
    ENERGY, 2023, 263