Sensitivity Analysis of a Large-Scale Air Pollution Model by Using Effective Stochastic Approaches

被引:0
|
作者
Todorov, Venelin [1 ,2 ]
Dimov, Ivan [3 ]
Ostromsky, Tzvetan [3 ]
Zlatev, Zahari [4 ]
机构
[1] Bulgarian Acad Sci, Informat Modeling Dept, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, Sofia 1113, Bulgaria
[2] Bulgarian Acad Sci, Dept Parallel Algorithms, Inst Math & Informat, Acad Georgi Bonchev Str,Block 25A, Sofia 1113, Bulgaria
[3] Bulgarian Acad Sci, Inst Informat & Commun Technol, Sofia, Bulgaria
[4] Aarhus Univ, Natl Ctr Environm & Energy, Frederiksborgvej 399,POB 358, DK-4000 Roskilde, Denmark
关键词
D O I
10.1007/978-3-031-20951-2_14
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper aims an exploration of model output sensitivity in the air pollution transport. A comprehensive experimental study of highly efficient stochastic approaches based on the Van der Corput sequence and its modification with different bases for multidimensional integration has been done. A comparison with the Latin Hypercube Sampling (LHS) and Fibonacci based lattice rule (FIBO) is given. The algorithms have been successfully applied to compute global Sobol sensitivity measures corresponding to the six chemical reactions rates and four different groups of pollutants. The numerical tests show that the stochastic algorithms under consideration are efficient for the multidimensional integrals and especially for computing small by value sensitivity indices.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 50 条
  • [1] Efficient Stochastic Approaches for Sensitivity Studies of an Eulerian Large-scale Air Pollution Model
    Dimov, I.
    Georgieva, R.
    Todorov, V.
    Ostromsky, Tz.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2017, 1895
  • [2] Monte Carlo sensitivity analysis of an Eulerian large-scale air pollution model
    Dimov, I.
    Georgieva, R.
    Ostromsky, Tz.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 107 : 23 - 28
  • [3] Improved Stochastic Lattice Methods for Large-Scale Air Pollution Model
    Todorov, Venelin
    Georgiev, Slavi
    Dimov, Ivan
    Georgieva, Rayna
    Ostromsky, Tzvetan
    [J]. LARGE-SCALE SCIENTIFIC COMPUTATIONS, LSSC 2023, 2024, 13952 : 363 - 371
  • [4] Monte Carlo Adaptive Technique for Sensitivity Analysis of a Large-Scale Air Pollution Model
    Dimov, Ivan
    Georgieva, Rayna
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 387 - +
  • [5] Sensitivity Analysis of a Large-Scale Air Pollution Model: Numerical Aspects and a Highly Parallel Implementation
    Ostromsky, Tzvetan
    Dimov, Ivan
    Georgieva, Rayna
    Zlatev, Zahari
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 197 - +
  • [6] Monte Carlo Methods for Sensitivity Studies of Large-scale Air Pollution Model
    Ostromsky, Tz
    Todorov, V
    Dimov, I
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302
  • [7] Running a large-scale air pollution model on fast supercomputers
    Owczarz, W
    Zlatev, Z
    [J]. ATMOSPHERIC MODELING, 2002, 130 : 185 - 204
  • [8] Sensitivity Study of a Large-Scale Air Pollution Model by Using High-Performance Computations and Monte Carlo Algorithms
    Ostromsky, Tz
    Dimov, I.
    Georgieva, R.
    Marinov, P.
    Zlatev, Z.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2013, 1561 : 153 - 163
  • [9] Sensitivity Study of Large-Scale Air Pollution Model Based on Modifications of the Latin Hypercube Sampling Method
    Ostromsky, Tzvetan
    Todorov, Venelin
    Dimov, Ivan
    Georgieva, Rayna
    Zlatev, Zahari
    Poryazov, Stoyan
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 156 - 163
  • [10] On the Performance, Scalability and Sensitivity Analysis of a Large Air Pollution Model
    Ostromsky, Tzvetan
    Alexandrov, Vassil
    Dimov, Ivan
    Zlatev, Zahari
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 2053 - 2061