Switchable Plasmonic Chirality for Light Modulation: From Near-Field to Far-Field Coupling

被引:5
|
作者
Lin, Yuanhai [1 ,2 ]
Guo, Heng [1 ,2 ]
Che, Deqing [1 ,2 ]
Wang, Junsheng [1 ,2 ]
机构
[1] Dalian Maritime Univ, Liaoning Key Lab Marine Sensing & Intelligent Dete, Dalian 116026, Peoples R China
[2] Dalian Maritime Univ, Informat Sci & Technol Coll, Dalian 116026, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 06期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CIRCULAR-DICHROISM; NANOSTRUCTURES;
D O I
10.1021/acs.jpclett.2c03659
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper describes a quasi-planar chiral metamaterial of metal-insulator- metal (MIM) tetramer arrays that support multiplasmon modes from a hybridization scheme to achieve significant chiroptical responses with the largest circular dichroism (CD) value of 42%. The chiroptical responses can be actively switched on and off by tuning the field coupling regime from near field to far field through the insulator (or spacer) thickness. Numerical calculations demonstrate that near-field coupling of the hybridized plasmons on the stacked metallic tetramers governs the chiroptical responses at small insulator thickness (t(SiO2) < 160 nm). In contrast, far-field coupling of the plasmon radiations dominates at large spacing (t(SiO2) > 160 nm) as phase retardation plays a crucial role. The quasi-planar chiral metamaterial with tunable plasmonic chirality enables efficient light modulation for polarization conversion: from circular to elliptical/linear polarization.
引用
收藏
页码:1403 / 1410
页数:8
相关论文
共 50 条
  • [1] Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation
    Kongsuwan, Nuttawut
    Demetriadou, Angela
    Horton, Matthew
    Chikkaraddy, Rohit
    Baumberg, Jeremy J.
    Hess, Ortwin
    [J]. ACS PHOTONICS, 2020, 7 (02) : 463 - 471
  • [2] Plasmonic anisotropic metasurfaces: from far-field measurements to near-field properties
    Yermakov, Oleh Y.
    Permyakov, Dmitry V.
    Dmitriev, Pavel A.
    Samusev, Anton K.
    Iorsh, Ivan V.
    Lavrinenko, Andrei V.
    Bogdanov, Andrey A.
    [J]. METAMATERIALS XI, 2018, 10671
  • [3] Polarization-dependent near-field coupling and far-field harmonic modulation in a graphene-based plasmonic nanostructure
    Qing, Ye Ming
    Yang, Zhaoyan
    Wang, Yunxia
    Ren, Yongze
    Wu, Jun
    [J]. PHYSICA SCRIPTA, 2024, 99 (10)
  • [4] Molding light with metasurfaces: from far-field to near-field interactions
    Gangaraj, Seyyed Ali Hassani
    Monticone, Francesco
    [J]. NANOPHOTONICS, 2018, 7 (06) : 1025 - 1040
  • [5] Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality
    Gorodetski, Yuri
    Drezet, Aurelien
    Genet, Cyriaque
    Ebbesen, Thomas W.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (20)
  • [6] Determining Far-Field EMI From Near-Field Coupling of a Power Converter
    Chen, Henglin
    Wang, Tao
    Feng, Limin
    Chen, Guozhu
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (10) : 5257 - 5264
  • [7] Plasmon waveguide converts far-field to near-field light
    不详
    [J]. LASER FOCUS WORLD, 2002, 38 (05): : 9 - 9
  • [8] THE NEAR-FIELD TO FAR-FIELD TRANSFORMATION
    MONK, P
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1995, 14 (01) : 41 - 56
  • [9] A Switchable Near-Field and Far-Field Compact Antenna Based on Ferromagnetic Resonance
    Wang, Yexin
    Fang, Yanru
    Liu, Changrong
    Liu, Xueguan
    [J]. 2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [10] Far-field and near-field analysis of light reflected from a photonic crystal
    Guo, Wei
    Raja, M. Yasin Akhtar
    [J]. OPTICS COMMUNICATIONS, 2006, 266 (01) : 19 - 24