An integrated methodology for dynamic risk prediction of thermal runaway in lithium-ion batteries

被引:28
|
作者
Meng, Huixing [1 ,5 ]
Yang, Qiaoqiao [1 ]
Zio, Enrico [2 ,3 ]
Xing, Jinduo [4 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
[2] MINES ParisTech PSL Univ Paris, Ctr Rech Risques & Crises CRC, Paris, France
[3] Politecn Milan, DOE, Milan, Italy
[4] Beijing Univ Civil Engn & Architecture, Sch Mech Elect & Vehicle Engn, Beijing 100044, Peoples R China
[5] 5 South Zhongguancun St, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Thermal runaway; Risk prediction; Dynamic Bayesian network; Support vector regression; ELECTRIC VEHICLES; HUMAN RELIABILITY; SAFETY ANALYSIS; NEURAL-NETWORK; FAULT-TREE; SYSTEMS; ISSUES; MODEL; AHP;
D O I
10.1016/j.psep.2023.01.021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The risk of thermal runaway in lithium-ion battery (LIB) attracts significant attention from domains of society, industry, and academia. However, the thermal runaway prediction in the framework of system safety requires further efforts. In this paper, we propose a methodology for dynamic risk prediction by integrating fault tree (FT), dynamic Bayesian network (DBN) and support vector regression (SVR). FT graphically describes the logic of mechanism of thermal runaway. DBN allows considering multiple states and uncertain inference for providing quantitative results of the risk evolution. SVR is subsequently utilized for predicting the risk from the DBN estimation. The proposed methodology can be applied for risk early warning of LIB thermal runaway.
引用
收藏
页码:385 / 395
页数:11
相关论文
共 50 条
  • [1] A model for the prediction of thermal runaway in lithium-ion batteries
    Azuaje-Berbeci, Bernardo J.
    Ertan, H. Bulent
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [2] Mitigating Thermal Runaway of Lithium-Ion Batteries
    Feng, Xuning
    Ren, Dongsheng
    He, Xiangming
    Ouyang, Minggao
    JOULE, 2020, 4 (04) : 743 - 770
  • [3] In Situ Thermal Runaway Detection in Lithium-Ion Batteries with an Integrated Internal Sensor
    Parekh, Mihit H.
    Li, Bing
    Palanisamy, Manikandan
    Adams, Thomas E.
    Tomar, Vikas
    Pol, Vilas G.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (08): : 7997 - 8008
  • [4] Application of artificial neural network for the prediction of thermal runaway in lithium-ion batteries
    Lekoane, Seketu
    Oboirien, Bilainu
    Seedat, Naadhira
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [5] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [6] MODELING THERMAL RUNAWAY IN PRISMATIC LITHIUM-ION BATTERIES
    Khan, Shehzad
    Anwar, Sohail
    Casa, Jairo
    Hasnain, Muhammad
    Ahmed, Hossain
    Sezer, Hayri
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10, 2023,
  • [7] Risk analysis method for thermal runaway gas toxicity of lithium-ion batteries
    Zhang Q.
    Qu Y.
    Liu T.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (01): : 12 - 19
  • [8] Numerical analysis of kinetic mechanisms for battery thermal runaway prediction in lithium-ion batteries
    Garcia, Antonio
    Monsalve-Serrano, Javier
    Lago Sari, Rafael
    Fogue Robles, Alvaro
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2022, 23 (10) : 1691 - 1707
  • [9] Chemical Thermal Runaway Modeling of Lithium-Ion Batteries for Prediction of Heat and Gas Generation
    Weber, Niklas
    Schuhmann, Sebastian
    Tuebke, Jens
    Nirschl, Hermann
    ENERGY TECHNOLOGY, 2023, 11 (10)
  • [10] Methodology for thermal modelling of lithium-ion batteries
    Iraola, U.
    Aizpuru, I.
    Canales, J. M.
    Etxeberria, A.
    Gil, I.
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 6752 - 6757