An effective networks intrusion detection approach based on hybrid Harris Hawks and multi-layer perceptron

被引:4
|
作者
Alazab, Moutaz [1 ]
Abu Khurma, Ruba [2 ]
Castillo, Pedro A. [3 ]
Abu-Salih, Bilal [4 ]
Martin, Alejandro [5 ]
Camacho, David [5 ]
机构
[1] Al Balqa Appl Univ, Fac Artificial Intelligence, Amman, Jordan
[2] Middle East Univ, Fac Informat Technol, MEU Res Unit, Amman, Jordan
[3] Univ Granada, Dept Comp Engn Automat & Robot, Granada, Spain
[4] Univ Jordan, King Abdullah II School Informat Technol, Amman, Jordan
[5] Univ Politecn Madrid, Dept Comp Syst Engn, Madrid, Spain
关键词
Multi-layer perceptron (MLP); Harris Hawks optimization (HHO); Intrusion detection system (IDS); DETECTION SYSTEM; FEATURE-SELECTION; MACHINE; MALWARE;
D O I
10.1016/j.eij.2023.100423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an Intrusion Detection System (IDS) employing the Harris Hawks Optimization algorithm (HHO) to optimize Multilayer Perceptron learning by optimizing bias and weight parameters. HHO-MLP aims to select optimal parameters in its learning process to minimize intrusion detection errors in networks. HHO-MLP has been implemented using EvoloPy NN framework, an open-source Python tool specialized for training MLPs using evolutionary algorithms. For purposes of comparing the HHO model against other evolutionary methodologies currently available, specificity and sensitivity measures, accuracy measures, and mse and rmse measures have been calculated using KDD datasets. Experiments have demonstrated the HHO MLP method is effective at identifying malicious patterns. HHO-MLP has been tested against evolutionary algorithms like Butterfly Optimization Algorithm (BOA), Grasshopper Optimization Algorithms (GOA), and Black Widow Optimizations (BOW), with validation by Random Forest (RF), XGBoost. HHO-MLP showed superior performance by attaining top scores with accuracy rate of 93.17%, sensitivity level of 89.25%, and specificity percentage of 95.41%.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Training Multi-Layer Perceptron Using Harris Hawks Optimization
    Eker, Erdal
    Kayri, Murat
    Ekinci, Serdar
    Izci, Davut
    2ND INTERNATIONAL CONGRESS ON HUMAN-COMPUTER INTERACTION, OPTIMIZATION AND ROBOTIC APPLICATIONS (HORA 2020), 2020, : 279 - 283
  • [2] Intrusion Detection System Based on Multi-Layer Perceptron Neural Networks and Decision Tree
    Esmaily, Jamal
    Moradinezhad, Reza
    Ghasemi, Jamal
    2015 7TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2015,
  • [3] A Multi-Layer Classification Approach for Intrusion Detection in IoT Networks Based on Deep Learning
    Qaddoura, Raneem
    Al-Zoubi, Ala' M.
    Faris, Hossam
    Almomani, Iman
    SENSORS, 2021, 21 (09)
  • [4] A MULTI-LAYER PERCEPTRON APPROACH FOR FLOW-BASED ANOMALY DETECTION
    Van Efferen, Lennart
    Ali-Eldin, Amr M. T.
    2017 INTERNATIONAL SYMPOSIUM ON NETWORKS, COMPUTERS AND COMMUNICATIONS (ISNCC), 2017,
  • [5] Time-based multi-layer perceptron for novelty detection in sensor networks
    Von Pless, G
    Al Karim, T
    Reznik, L
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA'04), 2004, : 156 - 163
  • [6] An Effective Hybrid Approach for Optimising the Learning Process of Multi-layer Neural Networks
    Mousavirad, Seyed Jalaleddin
    Bidgoli, Azam Asilian
    Ebrahimpour-Komleh, Hossein
    Schaefer, Gerald
    Korovin, Iakov
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 309 - 317
  • [7] Explainable AI for Intrusion Detection Systems: LIME and SHAP Applicability on Multi-Layer Perceptron
    Gaspar, Diogo
    Silva, Paulo
    Silva, Catarina
    IEEE ACCESS, 2024, 12 : 30164 - 30175
  • [8] An adaptive nonlinear whale optimization multi-layer perceptron cyber intrusion detection framework
    El-Ghaish, Hany
    Miqrish, Haitham
    Elmogy, Ahmed
    Elawady, Wael
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (10) : 4801 - 4814
  • [9] Multi-Layer Bayesian Based Intrusion Detection System
    Altwaijry, Hesham
    Algarny, Saeed
    WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2011, VOL II, 2011, : 918 - 922
  • [10] Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network
    Murlidhar, Bhatawdekar Ramesh
    Nguyen, Hoang
    Rostami, Jamal
    Bui, XuanNam
    Armaghani, Danial Jahed
    Ragam, Prashanth
    Mohamad, Edy Tonnizam
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2021, 13 (06) : 1413 - 1427