A hypertrophic scar is a complex medical problem. The study of triamcinolone acetonide for the treatment of scars is necessary. The 7mm full-thickness skin wounds were created on the back of BALA/c mice to construct the animal scar model. The different doses of triamcinolone acetonide injection or normal saline were injec-ted into the wound on the 15th, 30th and 45th day after the operation. The skin histopathological changes of mice were observed by Hematoxylin-Eosin (H&E) staining. The proteins and mRNA expression level of scar-biomarkers (COL1, COL3, alpha-SMA) in mice scar tissue were detected by western blot and qRT-PCR. Besides, the effect of triamcinolone acetonide on the proliferation, invasion, and migration of human hyper-trophic scar fibroblast (hHSFs) in vitro was also explored by cck-8, transwell and wound healing assays. After triamcinolone acetonide was injected into the wound, the proportion of scar was significantly reduced, and the treatment effect was concentration-dependently. H&E staining showed that the skin histopathological of mice was improved dose-dependently after injecting the low/middle/high-dosage of triamcinolone acetonide. The proteins and mRNA expression levels of COL1, COL3, and alpha-SMA were reduced dose-dependently in mice scar tissue. Furthermore, triamcinolone acetonide dose-dependently suppressed the proliferation, invasion, and migration of hHSFs in vitro. Together, triamcinolone acetonide suppressed scar formation in mice and human hypertrophic scar fibroblasts in a dose-dependent manner, phenotypically and mechanistically. The research and further exploration of triamcinolone acetonide in treating scar formation may find new effective treatment methods for the scar.