Long-time dynamics for the radial focusing fractional INLS

被引:0
|
作者
Majdoub, Mohamed [1 ,2 ]
Saanouni, Tarek [3 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Math, Dammam, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, Dammam, Saudi Arabia
[3] Qassim Univ, Coll Sci & Arts Uglat Asugour, Dept Math, Buraydah, Saudi Arabia
关键词
blowup; fractional NLS; inhomogeneous nonlinearity; Morawetz estimates; nonlinear equations; scattering; virial identities; NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; ENERGY SCATTERING; BLOW-UP; SOBOLEV INEQUALITIES; GROUND-STATE; SPACE; NLS; EXISTENCE; PROOF;
D O I
10.1002/mma.9620
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following fractional NLS with focusing inhomogeneous power-type nonlinearity: i partial derivative(t)u - (-Delta)(s)u + |x|(-b)|u|(p-1)u = 0, (t, x) is an element of R x R-N, where N >= 2, 1/2 < s < 1, 0 < b < 2s, and 1 + 2(2s-b) / N < p < 1 + 2(2s-b) / N-2s. We prove the ground state threshold of global existence and scattering versus finite time blowup of energy solutions in the inter-critical regime with spherically symmetric initial data. The scattering is proved by the new approach of Dodson-Murphy. This method is based on Tao's scattering criteria and Morawetz estimates. We describe the threshold using some non-conserved quantities in the spirit of the recent paper by Dinh. The radial assumption avoids a loss of regularity in Strichartz estimates. The challenge here is to overcome two main difficulties. The first one is the presence of a non-local fractional Laplacian operator. The second one is the presence of a singular weight in the nonlinearity. The greater part of this paper is devoted to the scattering of global solutions in H-s(R-N). The Lorentz spaces and the Strichartz estimates play crucial roles in our approach.
引用
收藏
页码:19199 / 19228
页数:30
相关论文
共 50 条
  • [1] Focusing NLS Equation: Long-Time Dynamics of Step-Like Initial Data
    de Monvel, Anne Boutet
    Kotlyarov, Vladimir P.
    Shepelsky, Dmitry
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (07) : 1613 - 1653
  • [2] LONG-TIME DYNAMICS OF RUBBER NETWORKS
    RONCA, G
    [J]. POLYMER, 1979, 20 (11) : 1321 - 1323
  • [3] Fractional dynamics in silk: From molecular picosecond subdiffusion to macroscopic long-time relaxation
    Krasnov, Igor
    Seydel, Tilo
    Mueller, Martin
    [J]. PHYSICAL REVIEW E, 2015, 91 (04):
  • [4] Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier's law
    Freitas, M. M.
    Ramos, A. J. A.
    Ozer, A. O.
    Almeida Junior, D. S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 891 - 927
  • [5] MODELS FOR LONG-TIME PROTEIN DYNAMICS
    PERICO, A
    GUENZA, M
    MORMINO, M
    [J]. JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 1994, A31 : 1009 - 1016
  • [6] Long-time behavior of solutions for a fractional diffusion problem
    Qi, Ailing
    Hu, Die
    Xiang, Mingqi
    [J]. BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [7] Long-time behavior of solutions for a fractional diffusion problem
    Ailing Qi
    Die Hu
    Mingqi Xiang
    [J]. Boundary Value Problems, 2021
  • [8] RANDOM SEQUENTIAL ADSORPTION - LONG-TIME DYNAMICS
    BARAM, A
    FIXMAN, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (05): : 1929 - 1933
  • [9] Long-time averaging for integrable Hamiltonian dynamics
    Eric Cancès
    François Castella
    Philippe Chartier
    Erwan Faou
    Claude Le Bris
    Frédéric Legoll
    Gabriel Turinici
    [J]. Numerische Mathematik, 2005, 100 : 211 - 232
  • [10] Long-time tails in the dynamics of Rouse polymers
    Tothova, J
    Lisy, V
    Zatovsky, AV
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (24): : 13135 - 13137