On Equations for Bent Thin-Wire Antennas

被引:1
|
作者
Voronovich, Alexander G. [1 ]
Johnston, Paul E. [1 ,2 ]
Lataitis, Richard J. [1 ,3 ]
机构
[1] NOAA, Phys Sci Lab, Boulder, CO 80305 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Sci & Technol Corp, Hampton, VA 23666 USA
关键词
Ideal conductors; Pocklington equation; thin wire antennas; INTEGRAL-EQUATION; SCATTERING;
D O I
10.1109/TAP.2022.3227803
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Pocklington equation in its standard form can be considered a Fredholm integral equation of the first kind with a singular kernel. Managing the singularity during numerical simulations presents certain practical difficulties. In this article, an alternative form of the Pocklington equation for a thin, bent, ideally conducting wire is derived in the form of a Fredholm integral equation of the second kind with a regular kernel, which is better suited for numerical treatment. The kernel of the integral equation does not depend on the wire radius, which enters only through diagonal elements of the interaction matrix. Both cases of loop and open-ended wires are considered with loop wire antennas allowing for a particularly simple formulation. Numerical simulations confirm the validity of the derived equations. Numerical results calculated for a specific circular loop antenna match available experimental data.
引用
收藏
页码:1234 / 1243
页数:10
相关论文
共 50 条
  • [1] On the Thin-Wire Integral Equations for Carbon Nanotube Antennas
    Fikioris, George
    Papathanasopoulos, Anastasios
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (07) : 3567 - 3576
  • [2] Integral equations for dielectric-coated thin-wire antennas
    Demidtchik, VI
    MMET 2000: INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2000, : 709 - 711
  • [3] THIN-WIRE MULTITURN LOOP ANTENNAS
    TAYLOR, CD
    HARRISON, CW
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1974, AP22 (03) : 407 - 413
  • [4] Genetic programming techniques for thin-wire antennas
    O'Donnell, Terry H.
    EVOLUTIONARY AND BIO-INSPIRED COMPUTATION: THEORY AND APPLICATIONS, 2007, 6563
  • [5] Analysis of Thin-wire Nanoloops as Superdirective Antennas
    Pantoja, Mario F.
    Nagar, Jogender
    Lu, Bingqian
    Yue, Taiwei
    Werner, Douglas H.
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 21 - 22
  • [6] The asymptotic method for thin-wire multielement antennas
    Mitrofanova, TV
    Petrov, VV
    IVTH INTERNATIONAL CONFERENCE ON ANTENNA THEORY AND TECHNIQUES, VOLS 1 AND 2, PROCEEDINGS, 2003, : 734 - 736
  • [7] On the Oscillations Appearing in Numerical Solutions of Solvable and Nonsolvable Integral Equations for Thin-Wire Antennas
    Papakanellos, Panagiotis J.
    Fikioris, George
    Michalopoulou, Asimina
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (05) : 1635 - 1644
  • [8] A SPECTRAL-ITERATIVE METHOD OF SOLUTION OF THE INTEGRAL-EQUATIONS FOR THIN-WIRE ANTENNAS
    VOLINETS, NA
    DEMIDCHIK, VI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1988, 31 (02): : 69 - 71
  • [9] Time-domain analysis of thin-wire loaded antennas using integral equations
    Pantoja, MF
    Bretones, AR
    Martín, RG
    IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2000, 147 (03) : 203 - 206
  • [10] Accurate modeling of thin-wire antennas in the FDTD method
    Douglas, M
    Okoniewski, M
    Stuchly, MA
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1999, 21 (04) : 261 - 265