Query Processing on Heterogeneous CPU/GPU Systems

被引:11
|
作者
Rosenfeld, Viktor [1 ]
Bress, Sebastian [2 ]
Markl, Volker [1 ]
机构
[1] Tech Univ Berlin, St 17 Juni 135, D-10623 Berlin, Germany
[2] Snowflake Inc, Stresemannstr 123, D-10963 Berlin, Germany
关键词
Heterogeneous query processing; graphics processing units; dedicated GPUs; integrated GPUs; data transfer bottleneck; query processing models; GRAPHICS; THROUGHPUT; STANDARD; WORK;
D O I
10.1145/3485126
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Due to their high computational power and internal memory bandwidth, graphic processing units (GPUs) have been extensively studied by the database systems research community. A heterogeneous query processing system that employs CPUs and GPUs at the same time has to solve many challenges, including how to distribute the workload on processors with different capabilities; how to overcome the data transfer bottleneck; and how to support implementations for multiple processors efficiently. In this survey we devise a classification scheme to categorize techniques developed to address these challenges. Based on this scheme, we categorize query processing systems on heterogeneous CPU/GPU systems and identify open research problems.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Latency-Aware Packet Processing on CPU-GPU Heterogeneous Systems
    Maghazeh, Arian
    Bordoloi, Unmesh D.
    Dastgeer, Usman
    Andrei, Alexandru
    Eles, Petru
    Peng, Zebo
    [J]. PROCEEDINGS OF THE 2017 54TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2017,
  • [2] Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems
    Sanchez-Fernandez, Andres J.
    Romero, Luis F.
    Peralta, Daniel
    Medina-Perez, Miguel Angel
    Saeys, Yvan
    Herrera, Francisco
    Tabik, Siham
    [J]. IEEE ACCESS, 2020, 8 : 124236 - 124253
  • [3] GHive: Accelerating Analytical Query Processing in Apache Hive via CPU-GPU Heterogeneous Computing
    Liu, Haotian
    Tang, Bo
    Zhang, Jiashu
    Deng, Yangshen
    Yan, Xiao
    Zheng, Xinying
    Shen, Qiaomu
    Zeng, Dan
    Mao, Zunyao
    Zhang, Chaozu
    You, Zhengxin
    Wang, Zhihao
    Jiang, Runzhe
    Wang, Fang
    Yiu, Man Lung
    Li, Huan
    Han, Mingji
    Li, Qian
    Luo, Zhenghai
    [J]. PROCEEDINGS OF THE 13TH SYMPOSIUM ON CLOUD COMPUTING, SOCC 2022, 2022, : 158 - 172
  • [4] Cholesky Factorization on Heterogeneous CPU and GPU Systems
    Chen, Jieyang
    Chen, Zizhong
    [J]. 2015 NINTH INTERNATIONAL CONFERENCE ON FRONTIER OF COMPUTER SCIENCE AND TECHNOLOGY FCST 2015, 2015, : 19 - 26
  • [5] Exploring Query Processing on CPU-GPU Integrated Edge Device
    Liu, Jiesong
    Zhang, Feng
    Li, Hourun
    Wang, Dalin
    Wan, Weitao
    Fang, Xiaokun
    Zhai, Jidong
    Du, Xiaoyong
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 4057 - 4070
  • [6] Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS
    Yogatama, Bobbi W.
    Gong, Weiwei
    Yu, Xiangyao
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 2491 - 2503
  • [7] A Bi-objective Optimization Framework for Heterogeneous CPU/GPU Query Plans
    Przymus, Piotr
    Kaczmarski, Krzysztof
    Stencel, Krzysztof
    [J]. FUNDAMENTA INFORMATICAE, 2014, 135 (04) : 483 - 501
  • [8] Parallel processing of matrix multiplication in a CPU and GPU heterogeneous environment
    Ohshima, Satoshi
    Kise, Kenji
    Katagiri, Takahiro
    Yuba, Toshitsugu
    [J]. HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2006, 2007, 4395 : 305 - +
  • [9] Efficient HEVC Decoder for Heterogeneous CPU with GPU Systems
    Wang, Biao
    Alvarez-Mesa, Mauricio
    Chi, Chi Ching
    Juurlink, Ben
    de Souza, Diego F.
    Ilic, Aleksandar
    Roma, Nuno
    Sousa, Leonel
    [J]. 2016 IEEE 18TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2016,
  • [10] Towards Optimization of Hybrid CPU/GPU Query Plans in Database Systems
    Bress, Sebastian
    Schallehn, Eike
    Geist, Ingolf
    [J]. NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, 2013, 185 : 27 - 35