Deep learning phase-field model for brittle fractures

被引:17
|
作者
Motlagh, Yousef Ghaffari [1 ,2 ]
Jimack, Peter K. [1 ]
de Borst, Rene [2 ]
机构
[1] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Sheffield, Dept Civil & Struct Engn, Sheffield, S Yorkshire, England
关键词
brittle fracture; deep learning; finite element method; neural networks; phase-field models; PINNs; INFORMED NEURAL-NETWORKS; CRACK-GROWTH; DISCRETE; DAMAGE; FRAMEWORK;
D O I
10.1002/nme.7135
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present deep learning phase-field models for brittle fracture. A variety of physics-informed neural networks (PINNs) techniques, for example, original PINNs, variational PINNs (VPINNs), and variational energy PINNs (VE-PINNs) are utilized to solve brittle phase-field problems. The performance of the different versions is investigated in detail. Also, different ways of imposing boundary conditions are examined and are compared with a self-adaptive PINNs approach in terms of computational cost. Furthermore, the data-driven discovery of the phase-field length scale is examined. Finally, several numerical experiments are conducted to assess the accuracy and the limitations of the discussed deep learning schemes for crack propagation in two dimensions. We show that results can be highly sensitive to parameter choices within the neural network.
引用
收藏
页码:620 / 638
页数:19
相关论文
共 50 条
  • [1] Validation of the Phase-Field Model for Brittle Fracture
    Seles, Karlo
    Tomic, Zoran
    Tonkovic, Zdenko
    Gubeljak, Nenad
    23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 1721 - 1727
  • [2] Amicromorphic phase-field model for brittle and quasi-brittle fracture
    Bharali, Ritukesh
    Larsson, Fredrik
    Jaenicke, Ralf
    COMPUTATIONAL MECHANICS, 2024, 73 (03) : 579 - 598
  • [3] A micromorphic phase-field model for brittle and quasi-brittle fracture
    Ritukesh Bharali
    Fredrik Larsson
    Ralf Jänicke
    Computational Mechanics, 2024, 73 : 579 - 598
  • [4] Convergence Check Phase-Field Scheme for Modelling of Brittle and Ductile Fractures
    Lesicar, Tomislav
    Polancec, Tomislav
    Tonkovic, Zdenko
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [5] A phase-field fracture model for brittle anisotropic materials
    Zhiheng Luo
    Lin Chen
    Nan Wang
    Bin Li
    Computational Mechanics, 2022, 70 : 931 - 943
  • [6] A phase-field model for brittle fracture of anisotropic materials
    Gmati, Hela
    Mareau, Charles
    Ammar, Amine
    El Arem, Saber
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (15) : 3362 - 3381
  • [7] Abaqus implementation of phase-field model for brittle fracture
    Msekh, Mohammed A.
    Sargado, Juan Michael
    Jamshidian, Mostafa
    Areias, Pedro Miguel
    Rabczuk, Timon
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 96 : 472 - 484
  • [8] A phase-field fracture model for brittle anisotropic materials
    Luo, Zhiheng
    Chen, Lin
    Wang, Nan
    Li, Bin
    COMPUTATIONAL MECHANICS, 2022, 70 (05) : 931 - 943
  • [9] A phase-field model for anisotropic brittle fracturing of piezoelectric ceramics
    A. Sridhar
    M.-A. Keip
    International Journal of Fracture, 2019, 220 : 221 - 242
  • [10] A phase-field model for anisotropic brittle fracturing of piezoelectric ceramics
    Sridhar, A.
    Keip, M-A
    INTERNATIONAL JOURNAL OF FRACTURE, 2019, 220 (02) : 221 - 242