Prediction of plasma volume and total hemoglobin mass with machine learning

被引:3
|
作者
Moreillon, B. [1 ,2 ]
Krumm, B. [1 ]
Saugy, J. J. [1 ]
Saugy, M. [1 ]
Botre, F. [1 ,3 ]
Vesin, J. M. [4 ]
Faiss, R. [1 ,5 ]
机构
[1] Univ Lausanne, Inst Sport Sci, Res & Expertise Antidoping Sci REDs, Lausanne, Switzerland
[2] World Cycling Ctr, Union Cycliste Int, Aigle, Switzerland
[3] Federaz Med Sportiva Italiana, Lab Antidoping, Rome, Italy
[4] Swiss Fed Inst Technol, Signal Proc Lab 2, Lausanne, Switzerland
[5] Synathlon Quartier Ctr, REDs, Off 2316, CH-1015 Lausanne, Switzerland
来源
PHYSIOLOGICAL REPORTS | 2023年 / 11卷 / 19期
关键词
blood; machine learning; plasma volume; prediction; total hemoglobin mass; PATIENT BLOOD MANAGEMENT; CO-REBREATHING METHOD; REFERENCE VALUES; STABILITY; CHILDREN; ANEMIA; ADAPTATION; BIOMARKERS; TIBETAN; STROKE;
D O I
10.14814/phy2.15834
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Hemoglobin concentration ([Hb]) is used for the clinical diagnosis of anemia, and in sports as a marker of blood doping. [Hb] is however subject to significant variations mainly due to shifts in plasma volume (PV). This study proposes a newly developed model able to accurately predict total hemoglobin mass (Hbmass) and PV from a single complete blood count (CBC) and anthropometric variables in healthy subject. Seven hundred and sixty-nine CBC coupled to measures of Hbmass and PV using a CO-rebreathing method were used with a machine learning tool to calculate an estimation model. The predictive model resulted in a root mean square error of 33.2 g and 35.6 g for Hbmass, and 179 mL and 244 mL for PV, in women and men, respectively. Measured and predicted data were significantly correlated (p < 0.001) with a coefficient of determination (R-2) ranging from 0.76 to 0.90 for Hbmass and PV, in both women and men. The Bland-Altman bias was on average 0.23 for Hbmass and 4.15 for PV. We herewith present a model with a robust prediction potential for Hbmass and PV. Such model would be relevant in providing complementary data in contexts such as the epidemiology of anemia or the individual monitoring of [Hb] in anti-doping.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hemoglobin concentration, total hemoglobin mass and plasma volume in patients: implications for anemia
    Otto, James M.
    Plumb, James O. M.
    Clissold, Eleri
    Kumar, Shriya B.
    Wakeham, Denis J.
    Schmidt, Walter
    Grocott, Michael P. W.
    Richards, Toby
    Montgomery, Hugh E.
    HAEMATOLOGICA, 2017, 102 (09) : 1477 - 1485
  • [2] Training Alterations In Total Hemoglobin Mass And Plasma Volume In Collegiate Athletes Residing At Altitude
    Kim, Sewan
    Goodrich, Jesse A.
    Frisco, Dillon J.
    Rueda, Miguel
    Poddar, Sourav
    Byrnes, William C.
    MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2020, 52 (07) : 835 - 835
  • [3] A Machine Learning Framework for Volume Prediction
    Onal, Umutcan
    Zafeirakopoulos, Zafeirakis
    ANALYSIS OF EXPERIMENTAL ALGORITHMS, SEA2 2019, 2019, 11544 : 408 - 423
  • [4] Total Hemoglobin Mass and Blood Volume of Elite Kenyan Runners
    Prommer, Nicole
    Thoma, Stefanie
    Quecke, Lennart
    Gutekunst, Thomas
    Voelzke, Christian
    Wachsmuth, Nadine
    Niess, Andreas Michael
    Schmidt, Walter
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2010, 42 (04): : 791 - 797
  • [5] Prediction of garlic clove volume and mass using a depth camera and machine learning models
    Son, Jin-Ho
    Park, Hyung-Gyu
    Han, Yu-Jin
    Kang, Seok-Ho
    Woo, Seung-Min
    Ha, Yu-Shin
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2025, 226
  • [6] Machine learning for amniotic fluid volume prediction
    Werner, H.
    Ribeiro, G.
    Orenstein, P.
    Oliveira, R.
    Seixas, R.
    Lopes, J.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 62 : 61 - 61
  • [7] Machine learning for total cloud cover prediction
    Ágnes Baran
    Sebastian Lerch
    Mehrez El Ayari
    Sándor Baran
    Neural Computing and Applications, 2021, 33 : 2605 - 2620
  • [8] Machine learning for total cloud cover prediction
    Baran, Agnes
    Lerch, Sebastian
    El Ayari, Mehrez
    Baran, Sandor
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07): : 2605 - 2620
  • [9] Machine Learning Methods for Woody Volume Prediction in Eucalyptus
    Santana, Dthenifer Cordeiro
    dos Santos, Regimar Garcia
    da Silva, Pedro Henrique Neves
    Pistori, Hemerson
    Teodoro, Larissa Pereira Ribeiro
    Poersch, Nerison Luis
    de Azevedo, Gileno Brito
    Azevedo, Glauce Tais de Oliveira Sousa
    Junior, Carlos Antonio da Silva
    Teodoro, Paulo Eduardo
    SUSTAINABILITY, 2023, 15 (14)
  • [10] Determinants and reference values for blood volume and total hemoglobin mass in women and men
    Oberholzer, Laura
    Montero, David
    Robach, Paul
    Siebenmann, Christoph
    Ryrsoe, Camilla Koch
    Bonne, Thomas C.
    Andersen, Andreas Breenfeldt
    Bejder, Jacob
    Karlsen, Trine
    Edvardsen, Elisabeth
    Ronnestad, Bent R.
    Hamarsland, Havard
    Cepeda-Lopez, Ana C.
    Rittweger, Joern
    Treff, Gunnar
    Ahlgrim, Christoph
    Almquist, Nicki Winfield
    Hallen, Jostein
    Lundby, Carsten
    AMERICAN JOURNAL OF HEMATOLOGY, 2024, 99 (01) : 88 - 98