Dynamics of Ginzburg-Landau vortices for vector fields on surfaces

被引:0
|
作者
Canevari, Giacomo [1 ]
Segatti, Antonio [2 ]
机构
[1] Univ Verona, Dipartimento Informat, Str Grazie 15, I-37134 Verona, Italy
[2] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 5, I-27100 Pavia, Italy
关键词
Ginzburg-Landau; Vector fields on surfaces; Gradient flow of the renormalized; energy; Gamma convergence; GAMMA-CONVERGENCE; LOWER BOUNDS; FUNCTIONALS; ENERGY;
D O I
10.1016/j.jfa.2023.110156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the gradient flow of the following Ginzburg-Landau type energy F-epsilon(u) := 1/2 integral(M) |Du|(2)(g) + 1/2 epsilon(2) (|u|(2)(g)-1)(2) vol(g). 2 epsilon 2 This energy is defined on tangent vector fields on a 2-dimensional closed and oriented Riemannian manifold M (here D stands for the covariant derivative) and depends on a small parameter epsilon > 0. If the energy satisfies proper bounds, when epsilon -> 0 the second term forces the vector fields to have unit length. However, due to the incompatibility for vector fields on M between the Sobolev regularity and the unit norm constraint, critical points of F epsilon tend to generate a finite number of singular points (called vortices) having non-zero index (when the Euler characteristic is non-zero). These types of problems have been extensively analyzed in the recent paper by R. Ignat & R. Jerrard [19]. As in Euclidean case (see, among the others [8]), the position of the vortices is ruled by the so-called renormalized energy. In this paper we are interested in the dynamics of vortices. We rigorously prove that the vortices move according to the gradient flow of the renormalized energy, which is the limit behaviour when epsilon -> 0 of the gradient flow of the GinzburgLandau energy.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:98
相关论文
共 50 条
  • [1] MOTION OF VORTICES FOR THE EXTRINSIC GINZBURG-LANDAU FLOW FOR VECTOR FIELDS ON SURFACES
    Canevari, Giacomo
    Segatti, Antonio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08): : 2087 - 2116
  • [2] Dynamics of Ginzburg-Landau vortices
    Jerrard, RL
    Soner, HM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (02) : 99 - 125
  • [3] DYNAMICS OF VORTICES IN THE GINZBURG-LANDAU EQUATION
    RICA, S
    TIRAPEGUI, E
    PHYSICS LETTERS A, 1991, 161 (01) : 53 - 59
  • [4] Stochastic dynamics of Ginzburg-Landau vortices in superconductors
    Deang, J
    Du, Q
    Gunzburger, MD
    PHYSICAL REVIEW B, 2001, 64 (05): : 0525061 - 0525064
  • [5] Dynamics of multiple degree Ginzburg-Landau vortices
    Bethuel, F.
    Orlandi, G.
    Smets, D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (01) : 229 - 261
  • [6] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186
  • [7] Dynamics of Multiple Degree Ginzburg-Landau Vortices
    F. Bethuel
    G. Orlandi
    D. Smets
    Communications in Mathematical Physics, 2007, 272 : 229 - 261
  • [8] Dynamics of multiple degree Ginzburg-Landau vortices
    Bethuel, F
    Orlandi, G
    Smets, D
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (11) : 837 - 842
  • [9] Dynamics of Ginzburg-Landau vortices: The pinning effect
    Lin, FH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (07): : 625 - 630
  • [10] Ginzburg-Landau vortices: Dynamics, pinning, and hysteresis
    Lin, FH
    Du, Q
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (06) : 1265 - 1293