A novel 3D fine-mesh flow field design and performance analysis for proton exchange membrane fuel cells

被引:11
|
作者
Sun, Feng [1 ,3 ]
Su, Dandan [2 ]
Li, Ping [1 ,3 ]
Dong, Xiaoping [2 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Hebei Univ, Coll Qual & Tech Supervis, Baoding 071002, Hebei, Peoples R China
[3] Shanxi Beike Qiantong Energy Storage Sci & Technol, Gaoping 048400, Peoples R China
基金
中国国家自然科学基金;
关键词
PEMFC; Structural optimization; 3D fine-mesh flow field; Porosity; Mass transfer; METAL FOAMS; CATHODE; SIMULATION;
D O I
10.1016/j.jpowsour.2023.233572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Optimizing flow field structures plays a crucial role in enhancing the mass transfer of reactant gas and improving the output power density of proton exchange membrane fuel cells (PEMFCs). Herein, a PEMFC model with a three-dimensional (3D) fine-mesh flow field is developed and investigated in detail using a 3D computational fluid dynamics (CFD) model. The flow velocity, oxygen partial pressure and oxygen molar fraction distribution in the 3D fine-mesh flow field are analyzed and compared with the parallel flow field. The numerical simulation results show that as the porosity of the 3D fine-mesh structure increases, the local flow velocity increases, the oxygen partial pressure drop decreases, and the oxygen molar fraction increases, which are conducive to improving the output performance of fuel cells. At an operating voltage of 0.4 V, the peak power density of the 3D fine flow field model with a porosity of 0.9 is 21.5% higher than that of the parallel flow field model.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Two-Phase flow study in the 3D fine-mesh flow field and gas diffusion layer of proton exchange membrane fuel cells
    Lv, Xuecheng
    Li, Yang
    Huang, Heng
    Zhou, Zhifu
    Wu, Wei-Tao
    Wei, Lei
    Lyu, Jizu
    Gao, Linsong
    Li, Yubai
    Song, Yongchen
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 244
  • [2] Flow field design with 3D geometry for proton exchange membrane fuel cells
    Yan, Xiaohui
    Guan, Cheng
    Zhang, Yao
    Jiang, Kaicheng
    Wei, Guanghua
    Cheng, Xiaojing
    Shen, Shuiyun
    Zhang, Junliang
    APPLIED THERMAL ENGINEERING, 2019, 147 : 1107 - 1114
  • [3] Performance enhancement in a proton exchange membrane fuel cell with a novel 3D flow field
    Shen, Jun
    Tu, Zhengkai
    Chan, Siew Hwa
    APPLIED THERMAL ENGINEERING, 2020, 164
  • [4] Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field
    Zhang, Guobin
    Xie, Biao
    Bao, Zhiming
    Niu, Zhiqiang
    Jiao, Kui
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (15) : 4697 - 4709
  • [5] Analysis of single- and two-phase flow characteristics of 3-D fine mesh flow field of proton exchange membrane fuel cells
    Bao, Zhiming
    Niu, Zhiqiang
    Jiao, Kui
    JOURNAL OF POWER SOURCES, 2019, 438
  • [6] Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells
    Qin, Zhengguo
    Huo, Wenming
    Bao, Zhiming
    Tongsh, Chasen
    Wang, Bowen
    Du, Qing
    Jiao, Kui
    ADVANCED SCIENCE, 2023, 10 (04)
  • [7] Design and Modelling of 3D Bionic Cathode Flow Field for Proton Exchange Membrane Fuel Cell
    Xuan, Lingfeng
    Wang, Yancheng
    Mei, Deqing
    Lan, Jingwei
    ENERGIES, 2021, 14 (19)
  • [8] Droplet dynamics in a proton exchange membrane fuel cell flow field design with 3D geometry
    Li, Zijun
    Wang, Shubo
    Li, Weiwei
    Zhu, Tong
    Fan, Zhaohu
    Xie, Xiaofeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (31) : 16693 - 16707
  • [9] Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells
    Hanxia Ruan
    Chaoqun Wu
    Shuliang Liu
    Tao Chen
    Heat and Mass Transfer, 2016, 52 : 2167 - 2176
  • [10] Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells
    Ruan, Hanxia
    Wu, Chaoqun
    Liu, Shuliang
    Chen, Tao
    HEAT AND MASS TRANSFER, 2016, 52 (10) : 2167 - 2176