Polymer-Grafted Graphene Oxide/Polybenzimidazole Nanocomposites for Efficient Proton-Conducting Membranes

被引:25
|
作者
Das, Anupam [1 ]
Mukherjee, Nilanjan [1 ]
Jana, Tushar [1 ]
机构
[1] Univ Hyderabad, Sch Chem, Hyderabad 500046, India
关键词
graphene oxide (GO); polybenzimidazole; RAFT polymerization; proton exchange membrane; nanocomposites; EXCHANGE MEMBRANE; COMPOSITE MEMBRANES; HIGH-TEMPERATURE; CATION-EXCHANGE; GRAPHITE OXIDE; LOW HUMIDITY; FUEL-CELLS; BRUSHES; ELECTROLYTE; REDUCTION;
D O I
10.1021/acsanm.3c00834
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we have functionalized graphene oxide (GO) by growing polymer chains on its surface and then utilized the polymer-g-GO as a nanofiller with oxypolybenzimidazole (OPBI) to make a highly efficient nanocomposite-based proton exchange membrane (PEM). Three different monomers, namely, acrylamide (AAM), 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and 3-sulfopropyl acrylate potassium salt (SPAK), were polymerized on the activated GO surface via surface-initiated reversible addition fragmentation chain-transfer polymerization to obtain three different types of polymer-g-GO, namely, pAAM-g-GO, pAMPS-g-GO, and pSPAK-g-GO. Furthermore, the chain length of grafted polymers in each case was altered in order to study the effects of the grafted polymer structure and chain length on the properties of nano-composite PEMs. The exfoliation of GO nanosheets after polymer grafting was confirmed by studying the surface morphology using various microscopic techniques. Gel permeation chromatography and thermogravimetric analysis helped in measuring the chain length of grafted polymers and grafting density on the GO surface. Furthermore, we have impregnated polymer-g-GO as nanofillers by varying loading wt % into the OPBI to fabricate a mixed matrix membrane which upon doping with phosphoric acid (PA) converted into a mixed matrix PEM. The prepared nanocomposite PEM displayed exceptionally good thermal stability, significantly improved tensile properties, improved PA loading followed by superior proton conductivity, and remarkable PA retention when exposed to saturated water vapor. When the 2.5 wt % pSPAK-g-GO (where the pSPAK chain length is 19.6 kDa) mixed with OPBI, the resulting PEM showed a remarkably high proton conductivity value of 0.327 S cm-1 at 160 degrees C, a significant 5-fold increment compared to the pristine OPBI membrane (0.067 S cm-1 at 160 degrees C). To the best of our knowledge, this will be the first report on utilization of polymer-g-GO in polybenzimidazole membranes for high-temperature PEM application.
引用
收藏
页码:6365 / 6379
页数:15
相关论文
共 50 条
  • [1] Proton-Conducting Channels in Polybenzimidazole Nanocomposites
    Singha, Shuvra
    Jana, Tushar
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2016, 96 (04) : 351 - 364
  • [2] New Proton-Conducting Membranes Based on Phosphorylated Polybenzimidazole and Silica
    A. A. Lysova
    A. B. Yaroslavtsev
    Inorganic Materials, 2019, 55 : 470 - 476
  • [3] New Proton-Conducting Membranes Based on Phosphorylated Polybenzimidazole and Silica
    Lysova, A. A.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2019, 55 (05) : 470 - 476
  • [4] Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells
    Lee, Hyunhee
    Han, Jusung
    Kim, Kihyun
    Kim, Junghwan
    Kim, Eunki
    Shin, Huiseob
    Lee, Jong-Chan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 74 : 223 - 232
  • [5] Novel proton-conducting polymer inclusion membranes
    Lilia Ocampo, Ana
    Cesar Aguilar, Julio
    de San Miguel, Eduardo Rodriguez
    Monroy, Minerva
    Roquero, Pedro
    de Gyves, Josefina
    JOURNAL OF MEMBRANE SCIENCE, 2009, 326 (02) : 382 - 387
  • [6] Proton-conducting composite membranes based on polybenzimidazole and sulfonated mesoporous organosilicate
    Tominaga, Yoichi
    Maki, Tei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (06) : 2724 - 2730
  • [7] Novel proton-conducting nanocomposites for hydrogen separation membranes
    Sadykov, V. A.
    Bespalko, Yu. N.
    Krasnov, A. V.
    Skriabin, P. I.
    Lukashevich, A. I.
    Fedorova, Yu. E.
    Sadovskaya, E. M.
    Eremeev, N. F.
    Krieger, T. A.
    Ishchenko, A. V.
    Belyaev, V. D.
    Uvarov, N. F.
    Ulihin, A. S.
    Skovorodin, I. N.
    SOLID STATE IONICS, 2018, 322 : 69 - 78
  • [8] Graphene oxide-based materials as proton-conducting membranes for electrochemical applications
    Moonnee, Itthipon
    Ahmad, Muhammad Sohail
    Inomata, Yusuke
    Kiatkittipong, Worapon
    Kida, Tetsuya
    NANOSCALE, 2024, 16 (45) : 20791 - 20810
  • [9] Thermal properties of proton-conducting radiation-grafted membranes
    Gürsel, Selmiye Alkan
    Schneider, Julian
    Ben Youcef, Hicham
    Wokaun, Alexander
    Scherer, Günther G.
    Journal of Applied Polymer Science, 2008, 108 (06): : 3577 - 3585
  • [10] Thermal properties of proton-conducting radiation-grafted membranes
    Guersel, Selmiye Alkan
    Schneider, Julian
    Ben Youcef, Hicharn
    Wokaun, Alexander
    Scherer, Guenther G.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 108 (06) : 3577 - 3585