Graph partitioning: an updated survey

被引:6
|
作者
Wu, Shufei [1 ]
Hou, Jianfeng [2 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo, Henan, Peoples R China
[2] Fuzhou Univ, Ctr Discrete Math, Fuzhou, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph; digraph; partition; bisection; Max-Cut; JUDICIOUS K-PARTITIONS; IMPROVED APPROXIMATION ALGORITHMS; MEMETIC ALGORITHM; RAMSEY NUMBERS; BIPARTITE SUBGRAPHS; DECOMPOSING GRAPHS; Z-EIGENVALUES; MAXIMUM CUTS; LOWER BOUNDS; BISECTIONS;
D O I
10.1080/09728600.2022.2148589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Graph partitioning problem, which is one of the most important topics in graph theory, usually asks for a partition of the vertex set of a graph into pairwise disjoint subsets with various requirements. It comes from the well-known Max-Cut Problem: Given a graph G, find the maximum bipartite subgraph of G. In practice, one often needs to find a partition of a given graph to optimize several quantities simultaneously. Such problems are called judicious partition problems by Bollobas and Scott. In this survey, we present some new results and problems on graph partitioning.
引用
收藏
页码:9 / 19
页数:11
相关论文
共 50 条
  • [1] Graph partitioning and visualization in graph mining: a survey
    Swati A. Bhavsar
    Varsha H. Patil
    Aboli H. Patil
    Multimedia Tools and Applications, 2022, 81 : 43315 - 43356
  • [2] Graph partitioning and visualization in graph mining: a survey
    Bhavsar, Swati A.
    Patil, Varsha H.
    Patil, Aboli H.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43315 - 43356
  • [3] Genetic Approaches for Graph Partitioning: A Survey
    Kim, Jin
    Hwang, Inwook
    Kim, Yong-Hyuk
    Moon, Byung-Ro
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 473 - 480
  • [4] Graph Computing Systems and Partitioning Techniques: A Survey
    Ayall, Tewodros Alemu
    Liu, Huawen
    Zhou, Changjun
    Seid, Abegaz Mohammed
    Gereme, Fantahun Bogale
    Abishu, Hayla Nahom
    Yacob, Yasin Habtamu
    IEEE ACCESS, 2022, 10 : 118523 - 118550
  • [5] Research on Dynamic Graph Partitioning Algorithms: A Survey
    Li H.
    Liu Y.-N.
    Yuan H.
    Yang S.-Q.
    Yun J.-P.
    Qiao S.-J.
    Huang J.-B.
    Cui J.-T.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (02): : 539 - 564
  • [6] Research on Knowledge Graph Partitioning Algorithms: A Survey
    Wang X.
    Chen W.-X.
    Yang Y.-J.
    Zhang X.-W.
    Feng Z.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (01): : 235 - 260
  • [7] Partitioning a graph into a cycle and a sparse graph
    Pokrovskiy, Alexey
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [8] Graph Partitioning for Distributed Graph Processing
    Onizuka M.
    Fujimori T.
    Shiokawa H.
    Data Science and Engineering, 2017, 2 (1) : 94 - 105
  • [9] Balanced Graph Partitioning
    Konstantin Andreev
    Harald Racke
    Theory of Computing Systems, 2006, 39 : 929 - 939
  • [10] Unbalanced Graph Partitioning
    Angsheng Li
    Peng Zhang
    Theory of Computing Systems, 2013, 53 : 454 - 466