Comparison of MLP and RBF neural networks for bearing remaining useful life prediction based on acoustic emission

被引:12
|
作者
Motahari-Nezhad, Mohsen [1 ]
Jafari, Seyed Mohammad [1 ]
机构
[1] Shahid Beheshti Univ, Fac Mech & Energy Engn, Tehran, Iran
关键词
MLP neural networks; RBF neural networks; remaining useful life; angular contact bearing; acoustic emission; DIAGNOSIS; MACHINE;
D O I
10.1177/13506501221106556
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this research, the efficiency of multilayer perceptron (MLP) and radial basis function (RBF) neural networks in estimating the remaining useful life (RUL) of angular contact ball bearing based on acoustic emission signals are investigated. To capture the bearing acoustic emission signals, an appropriate laboratory setup is used. Acoustic emission signal processing is carried out in the time and frequency domain and 102 different features are extracted. Prognostic feature selection have been used to reduce the dimension of the extracted features. Applications of the different training algorithms in MLP neural network are compared for bearing RUL prediction. The results indicate that acoustic emission is a good method for bearing RUL prediction. Mobility, Square-mean-root, and Count are the best time domain features based on the used feature selection method. Also, the Frequency center, Signal power, and F60 are the best frequency domain features. It was shown that between different backpropagation training algorithms for MLP neural net, Levenberg Marquardt has the lowest SSE error of 7.86 for the prediction of bearing remaining useful life based on frequency domain features. Moreover, comparison of RBF and MLP neural networks shows that RBF neural networks presents the best performance with SSE error of 2.85.
引用
收藏
页码:129 / 148
页数:20
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction of Bearing Based on Deep Perceptron Neural Networks
    Hong, Sheng
    Yin, Jiawei
    [J]. BDIOT 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS, 2018, : 175 - 179
  • [2] A remaining useful life prediction method for bearing based on deep neural networks
    Ding, Hua
    Yang, Liangliang
    Cheng, Zeyin
    Yang, Zhaojian
    [J]. MEASUREMENT, 2021, 172
  • [3] Bearing remaining useful life prediction based on deep autoencoder and deep neural networks
    Ren, Lei
    Sun, Yaqiang
    Cui, Jin
    Zhang, Lin
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2018, 48 : 71 - 77
  • [4] Comparison of MLP and RBF neural networks for Prediction of ECG Signals
    Sadr, Ali
    Mohsenifar, Najmeh
    Okhovat, Raziyeh Sadat
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2011, 11 (11): : 124 - 128
  • [5] Bearing Remaining Useful Life Prediction Based on Regression Shapalet and Graph Neural Network
    Yang, Xiaoyu
    Zheng, Ying
    Zhang, Yong
    Wong, David Shan-Hill
    Yang, Weidong
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] Remaining useful life prediction of bearing based on stacked autoencoder and recurrent neural network
    Han, Tian
    Pang, Jiachen
    Tan, Andy C. C.
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2021, 61 : 576 - 591
  • [7] Prediction of Bearing Remaining Useful Life With Deep Convolution Neural Network
    Ren, Lei
    Sun, Yaqiang
    Wang, Hao
    Zhang, Lin
    [J]. IEEE ACCESS, 2018, 6 : 13041 - 13049
  • [8] Bearing Remaining Life Prediction Based on Full Convolutional Layer Neural Networks
    Zhang, Jidong
    Zou, Yisheng
    Deng, Jialin
    Zhang, Xiaolu
    [J]. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2019, 30 (18): : 2231 - 2235
  • [9] Bearing Remaining Useful Life Prediction Based on Relation Network
    Zhao, Zhi-Hong
    Zhang, Ran
    Sun, Shi-Sheng
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1549 - 1557
  • [10] Prediction of remaining useful life of rolling bearing based on fractal dimension and convolutional neural network
    Ding, Guorong
    Wang, Wenbo
    Zhao, Jiaojiao
    [J]. MEASUREMENT & CONTROL, 2022, 55 (1-2): : 79 - 93