Distracted Driving Behavior and Driver's Emotion Detection Based on Improved YOLOv8 With Attention Mechanism

被引:1
|
作者
Ma, Bao [1 ]
Fu, Zhijun [1 ]
Rakheja, Subhash [2 ]
Zhao, Dengfeng [1 ]
He, Wenbin [1 ]
Ming, Wuyi [1 ]
Zhang, Zhigang [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Mech & Elect Engn, Zhengzhou 450002, Peoples R China
[2] Concordia Univ, Dept Mech & Ind Engn, Montreal, PQ H3G 1M8, Canada
基金
中国国家自然科学基金;
关键词
Behavioral sciences; Vehicles; YOLO; Vectors; Convolutional neural networks; Real-time systems; Emotion recognition; Nanoscale devices; Performance evaluation; Vehicle driving; Advanced driver assistance systems; multi-head self-attention; CNN; visual object classes; distracted driving behavior; driver's emotion; ARCHITECTURES;
D O I
10.1109/ACCESS.2024.3374726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An improved YOLOv8 detection method is proposed for detecting distracted driving behavior and driver's emotion. Unlike the commonly used YOLOv8 method, an attention mechanism named MHSA and a CNN module are synthesized to ensure improved performance in terms of accuracy and convergence, where MHSA is used to detect distracted driving behavior and CNN is used to detect driver's emotion. The FER2013 dataset and collected dataset are used to train the improved YOLOv8. The training results show that the proposed YOLOv8 demonstrates improved performance compared with the commonly used YOLO based methods. Finally, the validity of the proposed YOLOv8 method is illustrated through implementations in Jetson Nano platform, where the TensorRT and DeepStream methods in the Jetson Nano device are used to optimize the volume and operational speed of the proposed YOLOv8 method, respectively. Test results show that the proposed YOLOv8 method can yield better real-time and accuracy properties.
引用
收藏
页码:37983 / 37994
页数:12
相关论文
共 50 条
  • [1] Driver distracted driving detection based on improved YOLOv5
    Chen R.-X.
    Hu C.-C.
    Hu X.-L.
    Yang L.-X.
    Zhang J.
    He J.-L.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (04): : 959 - 968
  • [2] Distracted driving detection based on the improved CenterNet with attention mechanism
    Qingqing Zhang
    Zhongjie Zhu
    Yongqiang Bai
    Guanglong Liao
    Tingna Liu
    Multimedia Tools and Applications, 2022, 81 : 7993 - 8005
  • [3] Distracted driving detection based on the improved CenterNet with attention mechanism
    Zhang, Qingqing
    Zhu, Zhongjie
    Bai, Yongqiang
    Liao, Guanglong
    Liu, Tingna
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (06) : 7993 - 8005
  • [4] Improved Infrared Road Object Detection Algorithm Based on Attention Mechanism in YOLOv8
    Luo, Zilong
    Tian, Ying
    IAENG International Journal of Computer Science, 2024, 51 (06) : 673 - 680
  • [5] Improved YOLOv8 garment sewing defect detection method based on attention mechanism
    Xu, Zengbo
    Bao, Yuchen
    Tian, Bingqiang
    JOURNAL OF MEASUREMENTS IN ENGINEERING, 2024, 12 (04) : 706 - 721
  • [6] Student Behavior Detection in the Classroom Based on Improved YOLOv8
    Chen, Haiwei
    Zhou, Guohui
    Jiang, Huixin
    SENSORS, 2023, 23 (20)
  • [7] A Lightweight Rice Pest Detection Algorithm Using Improved Attention Mechanism and YOLOv8
    Yin, Jianjun
    Huang, Pengfei
    Xiao, Deqin
    Zhang, Bin
    AGRICULTURE-BASEL, 2024, 14 (07):
  • [8] SES-YOLOv8n: automatic driving object detection algorithm based on improved YOLOv8
    Sun, Yang
    Zhang, Yuhang
    Wang, Haiyang
    Guo, Jianhua
    Zheng, Jiushuai
    Ning, Haonan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 3983 - 3992
  • [9] A lightweight YOLOv8 based on attention mechanism for mango pest and disease detection
    Wang, Jiao
    Wang, Junping
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [10] Vehicle and Pedestrian Detection Algorithm in an Autonomous Driving Scene Based on Improved YOLOv8
    Du, Danfeng
    Xie, Yuchen
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2025, 151 (01)