DREAM: A Dynamic Scheduler for Dynamic Real-time Multi-model ML Workloads

被引:1
|
作者
Kim, Seah [1 ]
Kwon, Hyoukjun [2 ,3 ]
Song, Jinook [3 ]
Jo, Jihyuck [3 ]
Chen, Yu-Hsin [3 ]
Lai, Liangzhen [3 ]
Chandra, Vikas [3 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA USA
[2] UC Irvine, Irvine, CA 92697 USA
[3] Meta, Sunnyvale, CA 94089 USA
关键词
Scheduler; AR/VR; Multi-model ML; Hardware-Software Co-Design; ALGORITHM; PRECEDENCE; DEADLINES; TASKS;
D O I
10.1145/3623278.3624753
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Emerging real-time multi-model ML (RTMM) workloads such as AR/VR and drone control involve dynamic behaviors in various granularity; task, model, and layers within a model. Such dynamic behaviors introduce new challenges to the system software in an ML system since the overall system load is not completely predictable, unlike traditional ML workloads. In addition, RTMM workloads require real-time processing, involve highly heterogeneous models, and target resource-constrained devices. Under such circumstances, developing an effective scheduler gains more importance to better utilize underlying hardware considering the unique characteristics of RTMM workloads. Therefore, we propose a new scheduler, DREAM, which effectively handles various dynamicity in RTMM workloads targeting multi-accelerator systems. DREAM quantifies the unique requirements for RTMM workloads and utilizes the quantified scores to drive scheduling decisions, considering the current system load and other inference jobs on different models and input frames. DREAM utilizes tunable parameters that provide fast and effective adaptivity to dynamic workload changes. In our evaluation of five scenarios of RTMM workload, DREAM reduces the overall UXCost, which is an equivalent metric of the energy-delay product (EDP) for RTMM defined in the paper, by 32.2% and 50.0% in the geometric mean (up to 80.8% and 97.6%) compared to state-of-the-art baselines, which shows the efficacy of our scheduling methodology.
引用
收藏
页码:73 / 86
页数:14
相关论文
共 50 条
  • [1] Scheduling Parallel Soft Real-Time VM in Dynamic Workloads
    Ding, Xiaobo
    Ma, Zhong
    Dai, Xinfa
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2016, 22 (02): : 281 - 287
  • [2] Dynamic Real-Time Scheduler for Large-Scale MPSoCs
    Ruaro, Marcelo
    Moraes, Fernando G.
    2016 INTERNATIONAL GREAT LAKES SYMPOSIUM ON VLSI (GLSVLSI), 2016, : 341 - 346
  • [3] Multi-model Real-time Compressive Tracking
    Zhang Jianming
    Jin Xiaokang
    Wu Honglin
    Wu You
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (10) : 2373 - 2380
  • [4] A Dynamic MapReduce Scheduler for Heterogeneous Workloads
    Tian, Chao
    Zhou, Haojie
    He, Yongqiang
    Zha, Li
    2009 EIGHTH INTERNATIONAL CONFERENCE ON GRID AND COOPERATIVE COMPUTING, PROCEEDINGS, 2009, : 218 - 224
  • [5] Resource reclaiming in hard real-time systems with static and dynamic workloads
    Krings, AW
    Azadmanesh, MH
    THIRTIETH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, VOL 1: SOFTWARE TECHNOLOGY AND ARCHITECTURE, 1997, : 616 - 625
  • [6] Real-time dynamic modelling of industrial WFGD process using an intelligence-based multi-model approach
    Liu, Quanbo
    Li, Xiaoli
    Wang, Kang
    MEASUREMENT, 2025, 249
  • [7] Real-time multi-model decadal climate predictions
    Smith, Doug M.
    Scaife, Adam A.
    Boer, George J.
    Caian, Mihaela
    Doblas-Reyes, Francisco J.
    Guemas, Virginie
    Hawkins, Ed
    Hazeleger, Wilco
    Hermanson, Leon
    Ho, Chun Kit
    Ishii, Masayoshi
    Kharin, Viatcheslav
    Kimoto, Masahide
    Kirtman, Ben
    Lean, Judith
    Matei, Daniela
    Merryfield, William J.
    Mueller, Wolfgang A.
    Pohlmann, Holger
    Rosati, Anthony
    Wouters, Bert
    Wyser, Klaus
    CLIMATE DYNAMICS, 2013, 41 (11-12) : 2875 - 2888
  • [8] Real-time multi-model decadal climate predictions
    Doug M. Smith
    Adam A. Scaife
    George J. Boer
    Mihaela Caian
    Francisco J. Doblas-Reyes
    Virginie Guemas
    Ed Hawkins
    Wilco Hazeleger
    Leon Hermanson
    Chun Kit Ho
    Masayoshi Ishii
    Viatcheslav Kharin
    Masahide Kimoto
    Ben Kirtman
    Judith Lean
    Daniela Matei
    William J. Merryfield
    Wolfgang A. Müller
    Holger Pohlmann
    Anthony Rosati
    Bert Wouters
    Klaus Wyser
    Climate Dynamics, 2013, 41 : 2875 - 2888
  • [9] DPVFS: a dynamic procrastination cum DVFS scheduler for multi-core hard real-time systems
    Gawali, Shubhangi K.
    Raveendran, Biju K.
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2019, 11 (04) : 461 - 471
  • [10] Real-time monitoring data for real-time multi-model validation: coupling ENSEMBLE and EURDEP
    Galmarini, S.
    Bianconi, R.
    de Vries, G.
    Bellasio, R.
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2008, 99 (08) : 1233 - 1241