Oceanic Validation of IMERG-GMI Version 6 Precipitation Using the GPM Validation Network

被引:4
|
作者
Watters, Daniel C. [1 ]
Gatlin, Patrick N. [2 ]
Bolvin, David T. [3 ,4 ]
Huffman, George J. [3 ]
Joyce, Robert [3 ,4 ]
Kirstetter, Pierre [5 ,6 ,7 ,8 ]
Nelkin, Eric J. [3 ,4 ]
Ringerud, Sarah [3 ]
Tan, Jackson [3 ,9 ]
Wang, Jianxin [3 ,4 ]
Wolff, David [10 ]
机构
[1] NASA, NASA Postdoctoral Program, Marshall Space Flight Ctr, Huntsville, AL 35808 USA
[2] NASA, Marshall Space Flight Ctr, Huntsville, AL USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Sci Syst & Applicat Inc, Lanham, MD USA
[5] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK USA
[6] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK USA
[7] Univ Oklahoma, Sch Meteorol, Norman, OK USA
[8] NOAA, Natl Severe Storms Lab, Norman, OK USA
[9] Univ Maryland, Baltimore, MD USA
[10] NASA, Wallops Flight Facil, Wallops Isl, VA USA
关键词
Ocean; Precipitation; Algorithms; Microwave observations; Radars/Radar observations; Satellite observations; MICROWAVE; CALIBRATION; CYCLE;
D O I
10.1175/JHM-D-23-0134.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
NASA's multisatellite precipitation product from the Global Precipitation Measurement (GPM) mission, the Inte-grated Multi-satellitE Retrievals for GPM (IMERG) product, is validated over tropical and high-latitude oceans from June 2014 to August 2021. This oceanic study uses the GPM Validation Network's island-based radars to assess IMERG when the GPM Core Observatory's Microwave Imager (GMI) observes precipitation at these sites (i.e., IMERG-GMI). Error tracing from the Level 3 (gridded) IMERG V06B product back through to the input Level 2 (satellite footprint) Goddard Profiling Algorithm GMI V05 cli-mate (GPROF-CLIM) product quantifies the errors separately associated with each step in the gridding and calibration of the esti-mates from GPROF-CLIM to IMERG-GMI. Mean relative bias results indicate that IMERG-GMI V06B overestimates Alaskan high-latitude oceanic precipitation by +147% and tropical oceanic precipitation by +12% with respect to surface radars. GPROF-CLIM V05 overestimates Alaskan oceanic precipitation by +15%, showing that the IMERG algorithm's calibration adjustments to the input GPROF-CLIM precipitation estimates increase the mean relative bias in this region. In contrast, IMERG adjustments are minimal over tropical waters with GPROF-CLIM overestimating oceanic precipitation by +14%. This study discovered that the IMERG V06B gridding process incorrectly geolocated GPROF-CLIM V05 precipitation estimates by 0.1 degrees eastward in the latitude band 75 degrees N-75 degrees S, which has been rectified in the IMERG V07 algorithm. Correcting for the geolocation error in IMERG-GMI V06B improved oceanic statistics, with improvements greater in tropical waters than Alaskan waters. This error tracing approach en-ables a high-precision diagnosis of how different IMERG algorithm steps contribute to and mitigate errors, demonstrating the impor-tance of collaboration between evaluation studies and algorithm developers.
引用
收藏
页码:125 / 142
页数:18
相关论文
共 50 条
  • [1] Validation of IMERG Oceanic Precipitation over Kwajalein
    Wang, Jianxin
    Wolff, David B.
    Tan, Jackson
    Marks, David A.
    Pippitt, Jason L.
    Huffman, George J.
    REMOTE SENSING, 2022, 14 (15)
  • [2] Ground Validation of GPM IMERG Precipitation Products over Iran
    Maghsood, Fatemeh Fadia
    Hashemi, Hossein
    Hosseini, Seyyed Hasan
    Berndtsson, Ronny
    REMOTE SENSING, 2020, 12 (01)
  • [3] Validation of GPM IMERG Extreme Precipitation in the Maritime Continent by Station and Radar Data
    Da Silva, Nicolas A.
    Webber, Benjamin G. M.
    Matthews, Adrian J.
    Feist, Matthew M.
    Stein, Thorwald H. M.
    Holloway, Christopher E.
    Abdullah, Muhammad F. A. B.
    EARTH AND SPACE SCIENCE, 2021, 8 (07)
  • [4] Validation of IMERG Precipitation in Africa
    Dezfuli, Amin K.
    Ichoku, Charles M.
    Huffman, George J.
    Mohr, Karen I.
    Selker, John S.
    van de Giesen, Nick
    Hochreutener, Rebecca
    Annor, Frank O.
    JOURNAL OF HYDROMETEOROLOGY, 2017, 18 (10) : 2817 - 2825
  • [5] A comprehensive validation for GPM IMERG precipitation products to detect extremes and drought over mainland China
    Yu, Linfei
    Leng, Guoyong
    Python, Andre
    WEATHER AND CLIMATE EXTREMES, 2022, 36
  • [6] Validation of GPM IMERG V05 and V06 Precipitation Products over Iran
    Hosseini-Moghari, Seyed-Mohammad
    Tang, Qiuhong
    JOURNAL OF HYDROMETEOROLOGY, 2020, 21 (05) : 1011 - 1037
  • [7] Validation of the Final Monthly Integrated Multisatellite Retrievals for GPM (IMERG) Version 05 and Version 06 with Ground-Based Precipitation Gauge Measurements across the Canadian Arctic
    Eckert, Ellen
    Hudak, David
    Mekis, Eva
    Rodriguez, Peter
    Zhao, Bo
    Mariani, Zen
    Melo, Stella
    Strong, Kimberly
    Walker, Kaley A.
    JOURNAL OF HYDROMETEOROLOGY, 2022, 23 (05) : 715 - 731
  • [8] A Novel Approach to Identify Sources of Errors in IMERG for GPM Ground Validation
    Tan, Jackson
    Petersen, Walter A.
    Tokay, Ali
    JOURNAL OF HYDROMETEOROLOGY, 2016, 17 (09) : 2477 - 2491
  • [9] Validation of Integrated MultisatellitE Retrievals for GPM (IMERG) by using gauge-based analysis products of daily precipitation over East Asia
    Juwon Lee
    Eun-Hee Lee
    Kyung-Hee Seol
    Theoretical and Applied Climatology, 2019, 137 : 2497 - 2512
  • [10] Validation of Integrated MultisatellitE Retrievals for GPM (IMERG) by using gauge-based analysis products of daily precipitation over East Asia
    Lee, Juwon
    Lee, Eun-Hee
    Seol, Kyung-Hee
    THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 137 (3-4) : 2497 - 2512