A Multimodal Trajectory Prediction Method for Pedestrian Crossing Considering Pedestrian Motion State

被引:1
|
作者
Zhou, Zhuping [1 ]
Liu, Bowen [2 ]
Yuan, Changji [1 ]
Zhang, Ping [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
[2] Southeast Univ, Sch Transportat, Nanjing 210096, Peoples R China
[3] Univ Peoples Liberat Army, Army Engn, Nanjing 210007, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Trajectory; Pedestrians; Predictive models; Behavioral sciences; Market research; Feature extraction; Roads; MODEL;
D O I
10.1109/MITS.2023.3331817
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Predicting pedestrian crossing trajectories has become a primary task in aiding autonomous vehicles to assess risks in pedestrian-vehicle interactions. As agile participants with changeable behavior, pedestrians are often capable of choosing from multiple possible crossing trajectories. Current research lacks the ability to predict multimodal trajectories with interpretability, and it also struggles to capture low-probability trajectories effectively. Addressing this gap, this article proposes a multimodal trajectory prediction model that operates by first estimating potential motion trends to prompt the generation of corresponding trajectories. It encompasses three sequential stages. First, pedestrian motion characteristics are analyzed, and prior knowledge of pedestrian motion states is obtained using the Gaussian mixture clustering method. Second, a long short-term memory model is employed to predict future pedestrian motion states, utilizing the acquired prior knowledge as input. Finally, the predicted motion states are discretized into various potential motion patterns, which are then introduced as prompts to the Spatio-Temporal Graph Transformer model for trajectory prediction. Experimental results on the Euro-PVI and BPI datasets demonstrate that the proposed model achieves cutting-edge performance in predicting pedestrian crossing trajectories. Notably, it significantly enhances the diversity, accuracy, and interpretability of pedestrian crossing trajectory predictions.
引用
收藏
页码:82 / 95
页数:14
相关论文
共 50 条
  • [1] Pedestrian trajectory prediction method based on pedestrian pose
    Wang R.
    Song X.
    Chen K.
    Gong K.
    Zhang J.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (07): : 1743 - 1754
  • [2] Multimodal Transformer Network for Pedestrian Trajectory Prediction
    Yin, Ziyi
    Liu, Ruijin
    Xiong, Zhiliang
    Yuan, Zejian
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1259 - 1265
  • [3] Pedestrian Crossing Intention Prediction Method Based on Multimodal Feature Fusion
    Chen, Long
    Yang, Chen
    Cai, Yingfeng
    Wang, Hai
    Li, Yicheng
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (10): : 1779 - 1790
  • [4] Ego-Centric Pedestrian Trajectory Prediction Considering Camera Motion Parameters
    Ji, Yufei
    Liu, Pei
    Zheng, Nanfang
    Liu, Siwen
    Pu, Ziyuan
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2024: TRANSPORTATION SAFETY AND EMERGING TECHNOLOGIES, ICTD 2024, 2024, : 690 - 698
  • [5] A Multimodal Stepwise-Coordinating Framework for Pedestrian Trajectory Prediction
    Wang, Yijun
    Guo, Zekun
    Xu, Chang
    Lin, Jianxin
    SSRN,
  • [6] Representing Multimodal Behaviors With Mean Location for Pedestrian Trajectory Prediction
    Shi, Liushuai
    Wang, Le
    Long, Chengjiang
    Zhou, Sanping
    Tang, Wei
    Zheng, Nanning
    Hua, Gang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11184 - 11202
  • [7] CONTEXT-AWARE PEDESTRIAN TRAJECTORY PREDICTION WITH MULTIMODAL TRANSFORMER
    Damirchi, Haleh
    Greenspan, Michael
    Etemad, Ali
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2535 - 2539
  • [8] Context-Aware Pedestrian Trajectory Prediction with Multimodal Transformer
    Damirchi, Haleh
    Greenspan, Michael
    Etemad, Ali
    Proceedings - International Conference on Image Processing, ICIP, 2023, : 2535 - 2539
  • [9] CONTEXT-AWARE PEDESTRIAN TRAJECTORY PREDICTION WITH MULTIMODAL TRANSFORMER
    Damirchi, Haleh
    Greenspan, Michael
    Etemad, Ali
    arXiv, 2023,
  • [10] A multimodal stepwise-coordinating framework for pedestrian trajectory prediction
    Wang, Yijun
    Guo, Zekun
    Xu, Chang
    Lin, Jianxin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299