On Some New Maclaurin's Type Inequalities for Convex Functions in q-Calculus

被引:6
|
作者
Sitthiwirattham, Thanin [1 ,2 ]
Ali, Muhammad Aamir [3 ]
Budak, Huseyin [4 ]
机构
[1] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
[2] King Mongkuts Univ Technol North Bangkok, Res Grp Fract Calculus Theory & Applicat, Sci & Technol Res Inst, Bangkok 10800, Thailand
[3] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[4] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
基金
中国国家自然科学基金;
关键词
Maclaurin's inequalities; Hermite-Hadamard inequalities; convex functions; q-calculus; INTEGRAL-INEQUALITIES; MIDPOINT;
D O I
10.3390/fractalfract7080572
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work establishes some new inequalities to find error bounds for Maclaurin's formulas in the framework of q-calculus. For this, we first prove an integral identity involving q-integral and q-derivative. Then, we use this new identity to prove some q-integral inequalities for q-differentiable convex functions. The inequalities proved here are very important in the literature because, with their help, we can find error bounds for Maclaurin's formula in both q and classical calculus.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] On some error bounds of Maclaurin?s formula for convex functions in q-calculus
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Soontharanon, Jarunee
    FILOMAT, 2023, 37 (18) : 5883 - 5894
  • [2] Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in q-Calculus
    Zhao, Dafang
    Gulshan, Ghazala
    Ali, Muhammad Aamir
    Nonlaopon, Kamsing
    MATHEMATICS, 2022, 10 (03)
  • [3] On Some Generalized Simpson's and Newton's Inequalities for (α, m)-Convex Functions in q-Calculus
    Sial, Ifra Bashir
    Mei, Sun
    Ali, Muhammad Aamir
    Nonlaopon, Kamsing
    MATHEMATICS, 2021, 9 (24)
  • [4] HERMITE-HADAMARD TYPE INEQUALITIES FOR r-CONVEX FUNCTIONS IN q-CALCULUS
    Brahim, Kamel
    Riahi, Latifa
    Taf, Sabrina
    MATEMATICHE, 2015, 70 (02): : 295 - 303
  • [5] On Some New Inequalities of Hermite-Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus
    Sial, Ifra Bashir
    Ali, Muhammad Aamir
    Murtaza, Ghulam
    Ntouyas, Sotiris K.
    Soontharanon, Jarunee
    Sitthiwirattham, Thanin
    SYMMETRY-BASEL, 2021, 13 (10):
  • [6] Some new Simpson's type inequalities for coordinated convex functions in quantum calculus
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    Yildirim, Huseyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4515 - 4540
  • [7] Generalized q-convex functions characterized by q-calculus
    Alqahtani, Aisha M.
    Murtaza, Rashid
    Akmal, Saba
    Adnan
    Khan, Ilyas
    AIMS MATHEMATICS, 2023, 8 (04): : 9385 - 9399
  • [8] MACLAURIN TYPE INEQUALITIES FOR MULTIPLICATIVELY CONVEX FUNCTIONS
    Meftah, Badreddine
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2115 - 2125
  • [9] On some new inequalities of Hermite-Hadamard-Mercer midpoint and trapezoidal type in q-calculus
    Ali, Muhammad Aamir
    Goodrich, Christopher S.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (01): : 35 - 46
  • [10] Integral inequalities in q-calculus
    Gauchman, H
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (2-3) : 281 - 300