Differentially Private Adversarial Auto-Encoder to Protect Gender in Voice Biometrics

被引:1
|
作者
Chouchane, Oubaida [1 ]
Panariello, Michele [1 ]
Zari, Oualid [1 ]
Kerenciler, Ismet [1 ]
Chihaoui, Imen [1 ]
Todisco, Massimiliano [1 ]
Onen, Melek [1 ]
机构
[1] EURECOM, Sophia Antipolis, France
关键词
speaker verification; gender recognition; privacy preservation; differential privacy;
D O I
10.1145/3577163.3595102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the last decade, the use of Automatic Speaker Verification (ASV) systems has become increasingly widespread in response to the growing need for secure and efficient identity verification methods. The voice data encompasses a wealth of personal information, which includes but is not limited to gender, age, health condition, stress levels, and geographical and socio-cultural origins. These attributes, known as soft biometrics, are private and the user may wish to keep them confidential. However, with the advancement of machine learning algorithms, soft biometrics can be inferred automatically, creating the potential for unauthorized use. As such, it is crucial to ensure the protection of these personal data that are inherent within the voice while retaining the utility of identity recognition. In this paper, we present an adversarial Auto-Encoder-based approach to hide gender-related information in speaker embeddings, while preserving their effectiveness for speaker verification. We use an adversarial procedure against a gender classifier and incorporate a layer based on the Laplace mechanism into the Auto-Encoder architecture. This layer adds Laplace noise for more robust gender concealment and ensures differential privacy guarantees during inference for the output speaker embeddings. Experiments conducted on the VoxCeleb dataset demonstrate that speaker verification tasks can be effectively carried out while concealing speaker gender and ensuring differential privacy guarantees; moreover, the intensity of the Laplace noise can be tuned to select the desired trade-off between privacy and utility.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 50 条
  • [1] ADePT: Auto-encoder based Differentially Private Text Transformation
    Krishna, Satyapriya
    Gupta, Rahul
    Dupuy, Christophe
    16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 2435 - 2439
  • [2] Auto-encoder generative adversarial networks
    Zhai, Zhonghua
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (03) : 3043 - 3049
  • [3] Coupled generative adversarial stacked Auto-encoder: CoGASA
    Kiasari, Mohammad Ahangar
    Moirangthem, Dennis Singh
    Lee, Minho
    NEURAL NETWORKS, 2018, 100 : 1 - 9
  • [4] Adversarial auto-encoder for rating prediction with ratings and reviews
    Yi, Jin
    Huang, Jiajin
    Qin, Jin
    WEB INTELLIGENCE, 2020, 18 (04) : 285 - 294
  • [5] Adversarial auto-encoder for unsupervised deep domain adaptation
    Shao, Rui
    Lan, Xiangyuan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2772 - 2777
  • [6] A Novel Fault Detection Method Based on Adversarial Auto-Encoder
    Wang Jian
    Han Zhiyan
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4166 - 4170
  • [7] Adversarial Collaborative Auto-encoder for Top-N Recommendation
    Yuan, Feng
    Yao, Lina
    Benatallah, Boualem
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [8] Unsupervised deep feature representation using adversarial auto-encoder
    Cai, Jinyu
    Wang, Shiping
    Guo, Wenzhong
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER PHYSICAL SYSTEMS (ICPS 2019), 2019, : 749 - 754
  • [9] Data expansion method and application of couple adversarial auto-encoder
    Xu X.
    Ao J.
    Liu G.
    Wang Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (12): : 29 - 36
  • [10] Structural Adversarial Variational Auto-Encoder for Attributed Network Embedding
    Zhan, Junjian
    Li, Feng
    Wang, Yang
    Lin, Daoyu
    Xu, Guangluan
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 11