Preface to the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 2)'

被引:0
|
作者
Zhu, Shun-Peng [1 ]
De Jesus, Abilio M. P. [2 ]
Berto, Filippo [3 ]
Michopoulos, John G. [4 ]
Iacoviello, Francesco [5 ]
Wang, Qingyuan [6 ,7 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Porto, Fac Engn, INEGI, P-4200465 Porto, Portugal
[3] Sapienza Univ Rome, Dept Chem Engn Mat & Environm, I-00184 Rome, Italy
[4] Naval Res Lab, Ctr Mat Phys & Technol, Computat Multiphys Syst Lab, Washington, DC USA
[5] Univ Cassino & Southern Lazio, Dept Civil & Mech Engn, Cassino, Italy
[6] Sichuan Univ, Coll Architecture & Environm, MOE Key Lab Deep Earth Sci & Engn, Chengdu 610065, Peoples R China
[7] Chengdu Univ, Adv Res Inst, Chengdu 610106, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; physics-informed machine learning; structural integrity; failure mechanism modelling; prognostic and health management;
D O I
10.1098/rsta.2023.0248
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As an emerging research field, physics-informed machine learning and its structural integrity applications may bring new opportunities to the intelligent solution of engineering problems. Pure data-driven approaches have some limitations when solving engineering problems due to lack of interpretability and data hungry applications.Therefore, further unlocking the potential of machine learning will be an important research direction in the future. Knowledge-driven machine learning methods may have a profound impact on future engineering research. The theme of this special issue focuses on more specific physics-informed machine learning methods and case studies. This issue presents a series of practical ideas to demonstrate the huge potential of physics-informed machine learning for solving engineering problems with high precision and efficiency.This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 2)'.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Preface to the theme issue 'physics-informed machine learning and its structural integrity applications'
    Zhu, Shun-Peng
    De Jesus, Abilio M. P.
    Berto, Filippo
    Michopoulos, John G.
    Iacoviello, Francesco
    Wang, Qingyuan
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2260):
  • [2] Physics-informed machine learning and its structural integrity applications: state of the art
    Zhu, Shun-Peng
    Wang, Lanyi
    Luo, Changqi
    Correia, Jose A. F. O.
    De Jesus, Abilio M. P.
    Berto, Filippo
    Wang, Qingyuan Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2260):
  • [3] Physics-Informed Machine Learning Part II: Applications in Structural Response Forecasting
    Downey, Austin R. J.
    Tronci, Eleonora Maria
    Chowdhury, Puja
    Coble, Daniel
    DATA SCIENCE IN ENGINEERING, VOL. 10, IMAC 2024, 2025, : 63 - 66
  • [4] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [5] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [6] Special Issue: Physics-Informed Machine Learning for Advanced Manufacturing
    Guo, Yuebin
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (08):
  • [7] Guest Editorial: Special Issue on Physics-Informed Machine Learning
    Piccialli, Francesco
    Raissi, Maizar
    Viana, Felipe A. C.
    Fortino, Giancarlo
    Lu, Huimin
    Hussain, Amir
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 964 - 966
  • [8] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [9] Guest Editorial: Scientific and Physics-Informed Machine Learning for Industrial Applications
    Piccialli, Francesco
    Giampaolo, Fabio
    Camacho, David
    Mei, Gang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 2161 - 2164
  • [10] A Taxonomic Survey of Physics-Informed Machine Learning
    Pateras, Joseph
    Rana, Pratip
    Ghosh, Preetam
    APPLIED SCIENCES-BASEL, 2023, 13 (12):