Chloride salts/graphite foam composites prepared by vacuum impregnation with high thermal conductivity for medium temperature thermal energy storage

被引:8
|
作者
Lin, Zhiqiang [1 ,2 ]
Zhao, Zhongxing [2 ]
Song, Jinliang [1 ,4 ]
Tang, Zhongfeng [1 ,4 ]
Tao, Zechao [3 ,4 ]
Liu, Zhanjun [3 ,4 ]
Yin, Nan [4 ]
Shi, Quan [4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[2] Guangxi Univ, Sch Chem & Chem Engn, Nanning 530004, Peoples R China
[3] Chinese Acad Sci, Inst Coal Chem, Key Lab Carbon Mat, Taiyuan 030001, Peoples R China
[4] Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Molten salt; Graphite foam; Thermal energy storage; Phase change materials; Thermal conductivity; PHASE-CHANGE MATERIALS;
D O I
10.1016/j.tsep.2023.102026
中图分类号
O414.1 [热力学];
学科分类号
摘要
Chloride salts are ideal phase change materials (PCMs) for thermal energy storage (TES), but low thermal conductivity and high corrosiveness limit their applications. The use of porous skeletal materials to encapsulate chloride salts is a promising approach to overcome the above-mentioned disadvantages. In this study, graphite foam (GF) was selected as the skeleton material, low melting point LiCl-NaCl-KCl-ZnCl2 eutectic salts (LES) was selected as the PCM, and LES/GF composites were prepared by vacuum impregnation. The thermal conductivity of LES/GF reached 29.0 W/(m center dot K) at 25 degrees C, which is 68.6 times higher than LES. The highly thermally conductive 3D network structure of GF results in enhanced thermal conductivity. The thermal properties and stability of LES/GF indicate that the LES/GF composites are promising materials for medium temperature thermal storage.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The graphite foam/erythritol composites with ultrahigh thermal conductivity for medium temperature applications
    Zhang, Heyao
    Cheng, Jinxing
    Wang, Qingbo
    Xiong, Dongbo
    Song, Jinliang
    Tang, Zhongfeng
    Liu, Xiangdong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 230
  • [2] Azelaic Acid/Expanded Graphite Composites with High Latent Heat Storage Capacity and Thermal Conductivity at Medium Temperature
    Nguyen, Giang Tien
    Hwang, Ha Soo
    Lee, Jiyoung
    Park, In
    ACS OMEGA, 2021, 6 (12): : 8469 - 8476
  • [3] Microstructure and thermal properties of ternary chloride eutectic salts for high temperature thermal energy storage
    Xi, Shaobo
    Yuan, Zhun
    Yang, Senfeng
    Gong, Fengchun
    Liu, Shule
    Wang, Weilong
    Ding, Jing
    Lu, Jianfeng
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [4] Supercooling suppression and thermal conductivity enhancement of erythritol using graphite foam with ultrahigh thermal conductivity for thermal energy storage
    Wei, Chongyang
    Li, Yi
    Song, Jinliang
    Cheng, Jinxing
    Tang, Zhongfeng
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 153
  • [5] Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature
    Hassan, Naveed
    Minakshi, Manickam
    Liew, Willey Yun Hsien
    Amri, Amun
    Jiang, Zhong-Tao
    ENERGIES, 2023, 16 (12)
  • [6] The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites
    Wang, N.
    Zhang, X. R.
    Zhu, D. S.
    Gao, J. W.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 107 (03) : 949 - 954
  • [7] The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites
    N. Wang
    X. R. Zhang
    D. S. Zhu
    J. W. Gao
    Journal of Thermal Analysis and Calorimetry, 2012, 107 : 949 - 954
  • [8] Superhydrophobic Copper Foam Supported Phase Change Composites with High Thermal Conductivity for Energy Storage
    Liang, Weidong
    Zhu, Hongyu
    Wang, Ran
    Wang, Chengjun
    Zhu, Zhaoqi
    Sun, Hanxue
    Li, An
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2018, 21 (03):
  • [9] Performance Design of High-Temperature Chloride Salts as Thermal Energy Storage Material
    Le Zhao
    Jingyao Wang
    Liu Cui
    Baorang Li
    Xiaoze Du
    Hongwei Wu
    Journal of Thermal Science, 2024, 33 : 479 - 490
  • [10] Performance Design of High-Temperature Chloride Salts as Thermal Energy Storage Material
    Zhao, Le
    Wang, Jingyao
    Cui, Liu
    Li, Baorang
    Du, Xiaoze
    Wu, Hongwei
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (02) : 479 - 490