Advanced data analysis in inertial confinement fusion and high energy density physics

被引:8
|
作者
Knapp, P. F. [1 ,2 ]
Lewis, W. E. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2023年 / 94卷 / 06期
关键词
PRINCIPAL COMPONENT ANALYSIS; RAYLEIGH-TAYLOR INSTABILITY; BAYESIAN MODEL SELECTION; NONLINEAR DIMENSIONALITY REDUCTION; RICHTMYER-MESHKOV INSTABILITY; NEURAL-NETWORKS; UNCERTAINTY QUANTIFICATION; SPECTRAL-ANALYSIS; CROSS-VALIDATION; SIMULATION BIAS;
D O I
10.1063/5.0128661
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Bayesian analysis enables flexible and rigorous definition of statistical model assumptions with well-characterized propagation of uncertainties and resulting inferences for single-shot, repeated, or even cross-platform data. This approach has a strong history of application to a variety of problems in physical sciences ranging from inference of particle mass from multi-source high-energy particle data to analysis of black-hole characteristics from gravitational wave observations. The recent adoption of Bayesian statistics for analysis and design of high-energy density physics (HEDP) and inertial confinement fusion (ICF) experiments has provided invaluable gains in expert understanding and experiment performance. In this Review, we discuss the basic theory and practical application of the Bayesian statistics framework. We highlight a variety of studies from the HEDP and ICF literature, demonstrating the power of this technique. Due to the computational complexity of multi-physics models needed to analyze HEDP and ICF experiments, Bayesian inference is often not computationally tractable. Two sections are devoted to a review of statistical approximations, efficient inference algorithms, and data-driven methods, such as deep-learning and dimensionality reduction, which play a significant role in enabling use of the Bayesian framework. We provide additional discussion of various applications of Bayesian and machine learning methods that appear to be sparse in the HEDP and ICF literature constituting possible next steps for the community. We conclude by highlighting community needs, the resolution of which will improve trust in data-driven methods that have proven critical for accelerating the design and discovery cycle in many application areas. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0128661
引用
收藏
页数:49
相关论文
共 50 条
  • [1] StarDriver: A Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics
    David Eimerl
    E. Michael Campbell
    William F. Krupke
    Jason Zweiback
    W. L. Kruer
    John Marozas
    J. Zuegel
    J. Myatt
    J. Kelly
    D. Froula
    R. L. McCrory
    Journal of Fusion Energy, 2014, 33 : 476 - 488
  • [2] StarDriver: A Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics
    Eimerl, David
    Campbell, E. Michael
    Krupke, William F.
    Zweiback, Jason
    Kruer, W. L.
    Marozas, John
    Zuegel, J.
    Myatt, J.
    Kelly, J.
    Froula, D.
    McCrory, R. L.
    JOURNAL OF FUSION ENERGY, 2014, 33 (05) : 476 - 488
  • [3] Charged particle diagnostics for inertial confinement fusion and high-energy-density physics experiments
    Johnson, M. Gatu
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (02):
  • [4] Pulsed-power-driven high energy density physics and inertial confinement fusion research
    Matzen, MK
    Sweeney, MA
    Adams, RG
    Asay, JR
    Bailey, JE
    Bennett, GR
    Bliss, DE
    Bloomquist, DD
    Brunner, TA
    Campbell, RB
    Chandler, GA
    Coverdale, CA
    Cuneo, ME
    Davis, JP
    Deeney, C
    Desjarlais, MP
    Donovan, GL
    Garasi, CJ
    Haill, TA
    Hall, CA
    Hanson, DL
    Hurst, MJ
    Jones, B
    Knudson, MD
    Leeper, RJ
    Lemke, RW
    Mazarakis, MG
    McDaniel, DH
    Mehlhorn, TA
    Nash, TJ
    Olson, CL
    Porter, JL
    Rambo, PK
    Rosenthal, SE
    Rochau, GA
    Ruggles, LE
    Ruiz, CL
    Sanford, TWL
    Seamen, JF
    Sinars, DB
    Slutz, SA
    Smith, IC
    Struve, KW
    Stygar, WA
    Vesey, RA
    Weinbrecht, EA
    Wenger, DF
    Yu, EP
    PHYSICS OF PLASMAS, 2005, 12 (05)
  • [5] Principles of inertial confinement fusion - Physics of implosion and the concept of inertial fusion energy
    Nakai, S
    Takabe, H
    REPORTS ON PROGRESS IN PHYSICS, 1996, 59 (09) : 1071 - 1131
  • [6] OMEGA - 24-BEAM IRRADIATION FACILITY FOR INERTIAL CONFINEMENT FUSION AND HIGH-ENERGY DENSITY PHYSICS
    LUBIN, M
    ABATE, J
    BOLES, J
    BUNKENBERG, J
    EASTMAN, J
    HOOSE, J
    HOPKINS, R
    JACOBS, S
    LUND, L
    SEKA, W
    SOURES, J
    WILSON, J
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1979, 15 (09) : D94 - D95
  • [7] ANALYSIS OF THE PHYSICS AND PERFORMANCE OF INERTIAL CONFINEMENT FUSION SYSTEMS
    VELARDE, G
    ARAGONES, JM
    ARROYO, R
    GAGO, JA
    HONRUBIA, JJ
    FANEGAS, FM
    MARTINEZVAL, JM
    MINGUEZ, E
    OCANA, JL
    PENA, JJ
    PERLADO, JM
    SANTOLAYA, JM
    SERRANO, JF
    ATOMKERNENERGIE-KERNTECHNIK, 1984, 44 (03): : 209 - 214
  • [8] Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research
    Kantsyrev, V. L.
    Chuvatin, A. S.
    Safronova, A. S.
    Rudakov, L. I.
    Esaulov, A. A.
    Velikovich, A. L.
    Shrestha, I.
    Astanovitsky, A.
    Osborne, G. C.
    Shlyaptseva, V. V.
    Weller, M. E.
    Keim, S.
    Stafford, A.
    Cooper, M.
    PHYSICS OF PLASMAS, 2014, 21 (03)
  • [9] PLASMA PHYSICS - INERTIAL CONFINEMENT OF FUSION
    KEY, MH
    EVANS, RG
    NATURE, 1985, 313 (5998) : 94 - 95
  • [10] PHYSICS AND PROSPECTS OF INERTIAL CONFINEMENT FUSION
    BASKO, MM
    PLASMA PHYSICS AND CONTROLLED FUSION, 1993, 35 : B81 - B90