共 50 条
Low-Temperature Synthesis of Cu-Doped Anatase TiO2 Nanostructures via Liquid Phase Deposition Method for Enhanced Photocatalysis
被引:13
|作者:
Honda, Mitsuhiro
[1
]
Ochiai, Tsuyoshi
[2
]
Listiani, Popy
[1
]
Yamaguchi, Yuma
[1
]
Ichikawa, Yo
[1
]
机构:
[1] Nagoya Inst Technol, Grad Sch Engn, Nagoya 4668555, Japan
[2] Kanagawa Inst Ind Sci & TEChnol KISTEC, Kawasaki Tech Support Dept, Mat Anal Grp, Kawasaki 2130012, Japan
来源:
关键词:
photocatalysis;
liquid phase deposition;
copper doping;
low-temperature synthesis;
THIN-FILMS;
OXIDATION;
SURFACES;
RUTILE;
WATER;
DISINFECTION;
SPECTROSCOPY;
PERFORMANCE;
MECHANISMS;
DEFECTS;
D O I:
10.3390/ma16020639
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Titanium dioxide (TiO2) photocatalysis can harness the energy from sunlight, providing a solution to many green- and energy-related problems. In this study, we aimed to produce Cu doped TiO2 (Cu-TiO2) structures at a low temperature (similar to 70 degrees C) under atmospheric pressure based on liquid phase deposition. The products prepared with Cu nitrate exhibited anatase-phase TiO2 with the presence of Cu, and the particles showed a waxberry-like structure. Changing the Cu nitrate concentration allowed control of the atomic concentration; we confirmed similar to 1.3 atm.% of Cu ions in the product when we applied 10 mM in the precursor solution. By doping Cu, the light absorption edge shifted to 440 nm (similar to 2.9 eV), and we proved the photocatalytic reaction through action spectral measurement. We observed the decomposition of acetaldehyde into CO2 on Cu-TiO2 photocatalysts, which produced optimized improvements in photocatalytic activity at Cu dopant levels between 0.2 and 0.4 atm.%. This study demonstrates that the liquid phase deposition technique can be used for doping metallic ions into TiO2, which shows promise for preparing novel and unique nanomaterials as visible light photocatalysts.
引用
收藏
页数:16
相关论文