On pattern-avoiding permutons

被引:0
|
作者
Garbe, Frederik [1 ,2 ,6 ]
Hladky, Jan [3 ]
Kun, Gabor [4 ,5 ]
Pekarkova, Kristyna [2 ]
机构
[1] Heidelberg Univ, Inst Informat, Heidelberg, Germany
[2] Masaryk Univ, Fac Informat, Brno, Czech Republic
[3] Czech Acad Sci, Inst Comp Sci, Prague, Czech Republic
[4] HUN REN Alfred Renyi Inst Math, Budapest, Hungary
[5] Eotvos Lorand Univ, Inst Math, Budapest, Hungary
[6] Heidelberg Univ, Inst Informat, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
基金
欧洲研究理事会;
关键词
pattern-avoidance; permutations; permutons; removal lemma;
D O I
10.1002/rsa.21208
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order k$$ k $$ have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most (k-1)$$ \left(k-1\right) $$ many, and this bound is sharp. We use this to give a simple proof of the "permutation removal lemma."
引用
收藏
页码:46 / 60
页数:15
相关论文
共 50 条
  • [1] Pattern-avoiding polytopes
    Davis, Robert
    Sagan, Bruce
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2018, 74 : 48 - 84
  • [2] On pattern-avoiding partitions
    Jelinek, Vit
    Mansour, Toufik
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [3] On a Conjecture on Pattern-Avoiding Machines
    Bao, Christopher
    Cerbai, Giulio
    Choi, Yunseo
    Gan, Katelyn
    Zhang, Owen
    [J]. ANNALS OF COMBINATORICS, 2024,
  • [4] Optimization with Pattern-Avoiding Input
    Berendsohn, Benjamin Aram
    Kozma, Laszlo
    Opler, Michal
    [J]. PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 671 - 682
  • [5] Random pattern-avoiding permutations
    Madras, Neal
    Liu, Hailong
    [J]. ALGORITHMIC PROBABILITY AND COMBINATORICS, 2010, 520 : 173 - +
  • [6] Optimization with Pattern-Avoiding Input
    Berendsohn, Benjamin Aram
    Kozma, László
    Opler, Michal
    [J]. Proceedings of the Annual ACM Symposium on Theory of Computing, : 671 - 682
  • [7] Pattern-avoiding permutation powers
    Burcroff, Amanda
    Defant, Colin
    [J]. DISCRETE MATHEMATICS, 2020, 343 (11)
  • [8] On bijections for pattern-avoiding permutations
    Bloom, Jonathan
    Saracino, Dan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (08) : 1271 - 1284
  • [9] On Pattern-Avoiding Fishburn Permutations
    Juan B. Gil
    Michael D. Weiner
    [J]. Annals of Combinatorics, 2019, 23 : 785 - 800
  • [10] Optimization with pattern-avoiding input
    Freie Universität Berlin, Germany
    不详
    [J]. arXiv,