A POTENTIAL-BASED CONSTRUCTION OF THE INCREASING SUPERMARTINGALE COUPLING

被引:0
|
作者
Bayraktar, Erhan [1 ]
Deng, Shuoqing [2 ]
Norgilas, Dominykas [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 05期
关键词
Couplings; supermartingales; optimal transport; EXPLICIT MARTINGALE VERSION; OPTIMAL TRANSPORT; BOUNDS; DECOMPOSITION; MARGINALS; LYREBIRDS; PEACOCKS; PLANS;
D O I
10.1214/22-AAP1907
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The increasing supermartingale coupling, introduced by Nutz and Stebegg (Ann. Probab. 46 (2018) 3351-3398) is an extreme point of the set of "supermartingale" couplings between two real probability measures in convex-decreasing order. In the present paper we provide an explicit construction of a triple of functions, on the graph of which the increasing super -martingale coupling concentrates. In particular, we show that the increasing supermartingale coupling can be identified with the left-curtain martingale coupling and the antitone coupling to the left and to the right of a uniquely determined regime-switching point, respectively.Our construction is based on the concept of the shadow measure. We show how to determine the potential of the shadow measure associated to a supermartingale, extending the recent results of Beiglbock et al. (Electron. Commun. Probab. 27 (2022) 1-12) obtained in the martingale setting.
引用
收藏
页码:3803 / 3834
页数:32
相关论文
共 50 条
  • [1] Potential-based achievement goals
    Elliot, Andrew
    Murayama, Kou
    Kobeisy, Ahmed
    Lichtenfeld, Stephanie
    BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY, 2015, 85 (02) : 192 - 206
  • [2] Potential-based hierarchical clustering
    Shi, SM
    Yang, GW
    Wang, DX
    Zheng, WM
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITON, VOL IV, PROCEEDINGS, 2002, : 272 - 275
  • [3] The unrecognized potential of potential-based achievement goals
    Tempelaar, Dirk
    BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY, 2024,
  • [4] Potential-based volume integral equations
    Chang, Ruinan
    Lomakin, Vitaliy
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2712 - 2715
  • [5] Reduction of Potential-Based Flow Networks
    Klimm, Max
    Pfetsch, Marc E.
    Raber, Rico
    Skutella, Martin
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 48 (04) : 2287 - 2303
  • [6] On the robustness of potential-based flow networks
    Max Klimm
    Marc E. Pfetsch
    Rico Raber
    Martin Skutella
    Mathematical Programming, 2023, 197 : 337 - 374
  • [7] On the robustness of potential-based flow networks
    Klimm, Max
    Pfetsch, Marc E.
    Raber, Rico
    Skutella, Martin
    MATHEMATICAL PROGRAMMING, 2023, 197 (01) : 337 - 374
  • [8] Ordinal Potential-based Player Rating
    Vadori, Nelson
    Savani, Rahul
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [9] Proximity Curves for Potential-Based Clustering
    Attila Csenki
    Daniel Neagu
    Denis Torgunov
    Natasha Micic
    Journal of Classification, 2020, 37 : 671 - 695
  • [10] Proximity Curves for Potential-Based Clustering
    Csenki, Attila
    Neagu, Daniel
    Torgunov, Denis
    Micic, Natasha
    JOURNAL OF CLASSIFICATION, 2020, 37 (03) : 671 - 695