Optimizing IoT intrusion detection system: feature selection versus feature extraction in machine learning

被引:5
|
作者
Li, Jing [1 ]
Othman, Mohd Shahizan [1 ]
Chen, Hewan [2 ]
Yusuf, Lizawati Mi [1 ]
机构
[1] Univ Technol Malaysia, Johor Baharu, Malaysia
[2] China Jiliang Univ, Hangzhou, Peoples R China
关键词
Internet of Things; IoT; Intrusion detection; Feature selection; Feature extraction; Machine learning; Attack classification; DETECTION MODEL; CLASSIFIER;
D O I
10.1186/s40537-024-00892-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Internet of Things (IoT) devices are widely used but also vulnerable to cyberattacks that can cause security issues. To protect against this, machine learning approaches have been developed for network intrusion detection in IoT. These often use feature reduction techniques like feature selection or extraction before feeding data to models. This helps make detection efficient for real-time needs. This paper thoroughly compares feature extraction and selection for IoT network intrusion detection in machine learning-based attack classification framework. It looks at performance metrics like accuracy, f1-score, and runtime, etc. on the heterogenous IoT dataset named Network TON-IoT using binary and multiclass classification. Overall, feature extraction gives better detection performance than feature selection as the number of features is small. Moreover, extraction shows less feature reduction compared with that of selection, and is less sensitive to changes in the number of features. However, feature selection achieves less model training and inference time compared with its counterpart. Also, more space to improve the accuracy for selection than extraction when the number of features changes. This holds for both binary and multiclass classification. The study provides guidelines for selecting appropriate intrusion detection methods for particular scenarios. Before, the TON-IoT heterogeneous IoT dataset comparison and recommendations were overlooked. Overall, the research presents a thorough comparison of feature reduction techniques for machine learning-driven intrusion detection in IoT networks.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Optimizing IoT intrusion detection system: feature selection versus feature extraction in machine learning
    Jing Li
    Mohd Shahizan Othman
    Hewan Chen
    Lizawati Mi Yusuf
    [J]. Journal of Big Data, 11
  • [2] Machine learning-based intrusion detection: feature selection versus feature extraction
    Ngo, Vu-Duc
    Vuong, Tuan-Cuong
    Van Luong, Thien
    Tran, Hung
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 2365 - 2379
  • [3] Intrusion Detection System Using Feature Extraction with Machine Learning Algorithms in IoT
    Musleh, Dhiaa
    Alotaibi, Meera
    Alhaidari, Fahd
    Rahman, Atta
    Mohammad, Rami M.
    [J]. JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (02)
  • [4] Automatic Feature Extraction and Selection For Machine Learning Based Intrusion Detection
    Liu, Jinjie
    Chung, Sun Sunnie
    [J]. 2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1400 - 1405
  • [5] Feature extraction for machine learning-based intrusion detection in IoT networks
    Mohanad Sarhan
    Siamak Layeghy
    Nour Moustafa
    Marcus Gallagher
    Marius Portmann
    [J]. Digital Communications and Networks, 2024, 10 (01) : 205 - 216
  • [6] Feature extraction for machine learning-based intrusion detection in IoT networks
    Sarhan, Mohanad
    Layeghy, Siamak
    Moustafa, Nour
    Gallagher, Marcus
    Portmann, Marius
    [J]. DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (01) : 205 - 216
  • [7] Optimizing intrusion detection using intelligent feature selection with machine learning model
    Aljehane, Nojood O.
    Mengash, Hanan A.
    Hassine, Siwar B. H.
    Alotaibi, Faiz A.
    Salama, Ahmed S.
    Abdelbagi, Sitelbanat
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 91 : 39 - 49
  • [8] Optimizing IoT Intrusion Detection Using Balanced Class Distribution, Feature Selection, and Ensemble Machine Learning Techniques
    Musthafa, Muhammad Bisri
    Huda, Samsul
    Kodera, Yuta
    Ali, Md. Arshad
    Araki, Shunsuke
    Mwaura, Jedidah
    Nogami, Yasuyuki
    [J]. SENSORS, 2024, 24 (13)
  • [9] Intrusion Detection System with an Ensemble Learning and Feature Selection Framework for IoT Networks
    Rohini, G.
    Gnana Kousalya, C.
    Bino, J.
    [J]. IETE JOURNAL OF RESEARCH, 2023, 69 (12) : 8859 - 8875
  • [10] INTRUSION DETECTION BASED ON MACHINE LEARNING AND FEATURE SELECTION
    Alaoui, Souad
    El Gonnouni, Amina
    Lyhyaoui, Abdelouahid
    [J]. MENDEL 2011 - 17TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING, 2011, : 199 - 206