miR-324-3p Suppresses Hepatic Stellate Cell Activation and Hepatic Fibrosis Via Regulating SMAD4 Signaling Pathway

被引:0
|
作者
Chen, Si-Yu [1 ]
Chen, Xin [2 ]
Zhu, Sai [2 ]
Xu, Jin-Jin [2 ]
Li, Xiao-Feng [2 ]
Yin, Na-Na [2 ]
Xiao, Yan-Yan [2 ]
Huang, Cheng [2 ]
Li, Jun [2 ]
机构
[1] Hefei BOE Hosp, Dept Pharm, Intersect Dongfang Ave & Wenzhong Rd, Hefei, Peoples R China
[2] Anhui Med Univ, Sch Pharm, 81 Mei Shan Rd, Hefei 230032, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
miR-324-3p; Hepatic fibrosis; LX-2 cell activation; SMAD4; LIVER FIBROSIS; MICRORNAS; PROLIFERATION; INFLAMMATION; APOPTOSIS; MIGRATION; REVERSION; DISEASE; CANCER; HSC;
D O I
10.1007/s12033-024-01078-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In hepatic fibrosis (HF), hepatic stellate cells (HSCs) form the extracellular matrix (ECM), and the pathological accumulation of ECM in the liver leads to inflammation. Our previous research found that miR-324-3p was down-regulated in culture-activated human HSCs. However, the precise effect of miR-324-3p on HF has not been elucidated. In this study, the HF mouse models were induced through directly injecting carbon tetrachloride (CCl4) into mice; the HF cell models were constructed using TGF-beta 1-treated LX-2 cells. Next, real-time-quantitative polymerase chain reaction (RT-qPCR), western blot (WB) and immunohistochemistry (IHC) were applied to assess the expression levels of miR-324-3p, alpha-smooth muscle actin (alpha-SMA), Vimentin or SMAD4; hematoxylin and eosin (H&E), Masson' s trichrome and Sirius red staining to evaluate the liver injury; luciferase reporter assay to verify the targeting relationship between miR-324-3p and SMAD4; enzyme-linked immunosorbent assay (ELISA) to determine the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and cell counting kit-8 (CCK-8) and flow cytometry to evaluate the effects of miR-324-3p on cell proliferation and cycle/apoptosis, respectively. The experimental results showed a reduction in miR-324-3p level in CCl4-induced HF mice as well as transforming growth factor (TGF)-beta 1-activated HSCs. Interestingly, the miR-324-3p level was rescued following the HF recovery process. In HF mice induced by CCl4, miR-324-3p overexpression inhibited liver tissue damage, decreased serum ALT and AST levels, and inhibited fibrosis-related biomarkers (alpha-SMA, Vimentin) expression, thereby inhibiting HF. Similarly, miR-324-3p overexpression up-regulated alpha-SMA and Vimentin levels in HF cells, while knockdown of miR-324-3p had the opposite effect. Besides, miR-324-3p played an antifibrotic role through inhibiting the proliferation of hepatocytes. Further experiments confirmed that miR-324-3p targeted and down-regulated SMAD4 expression. SMAD4 was highly expressed in HF cells, and silencing SMAD4 significantly decreased the alpha-SMA and Vimentin levels in HF cells. Collectively, the miR-324-3p may suppress the activation of HSCs and HF by targeting SMAD4. Therefore, miR-324-3p is identified as a potential and novel therapeutic target for HF.
引用
收藏
页码:673 / 688
页数:16
相关论文
共 50 条
  • [1] Clusterin Attenuates Hepatic Fibrosis by Inhibiting Hepatic Stellate Cell Activation and Downregulating the Smad3 Signaling Pathway
    Seo, Hye-Young
    Lee, So-Hee
    Lee, Ji-Ha
    Kang, Yu Na
    Choi, Young-Keun
    Hwang, Jae Seok
    Park, Keun-Gyu
    Jang, Byoung Kuk
    Kim, Mi Kyung
    CELLS, 2019, 8 (11)
  • [2] Lingonberry Anthocyanins Inhibit Hepatic Stellate Cell Activation and Liver Fibrosis via TGFβ/Smad/ERK Signaling Pathway
    Zhang, Guokun
    Jiang, Yunyao
    Liu, Xin
    Deng, Yongyan
    Wei, Bin
    Shi, Liyan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (45) : 13546 - 13556
  • [3] GATA3 promotes the autophagy and activation of hepatic stellate cell in hepatic fibrosis via regulating miR-370/HMGB1 pathway
    Xie, Zhengyuan
    Li, Yangyang
    Xiao, Peiguang
    Ke, Shanmiao
    GASTROENTEROLOGIA Y HEPATOLOGIA, 2024, 47 (03): : 219 - 229
  • [4] Yao medicine Amydrium hainanense suppresses hepatic fibrosis by repressing hepatic stellate cell activation via STAT3 signaling
    Wu, Bingmin
    Huang, Lan
    Wang, Yange
    Zeng, Lishan
    Lin, Ying
    Li, Jingyan
    Wang, Shaogui
    Zhang, Guifang
    An, Lin
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [5] Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/Smad signaling pathway
    Mu, Mao
    Zuo, Shi
    Wu, Rong-Min
    Deng, Kai-Sheng
    Lu, Shuang
    Zhu, Juan-Juan
    Zou, Gao-Liang
    Yang, Jing
    Cheng, Ming-Liang
    Zhao, Xue-Ke
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2018, 12 : 4107 - 4115
  • [6] Substance P promotes hepatic stellate cell proliferation and activation via the TGF-β1/Smad-3 signaling pathway
    Peng, Lei
    Jia, Xiaoqing
    Zhao, Jianjian
    Cui, Ruibing
    Yan, Ming
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2017, 329 : 293 - 300
  • [7] Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway
    Sui, Miao
    Jiang, Xiaofei
    Chen, Jun
    Yang, Haiyan
    Zhu, Yan
    BIOMEDICINE & PHARMACOTHERAPY, 2018, 106 : 125 - 133
  • [8] Casticin attenuates liver fibrosis and hepatic stellate cell activation by blocking TGF-β/Smad signaling pathway
    Zhou, Ling
    Dong, Xiaoying
    Wang, Linlin
    Shan, Lanlan
    Li, Ting
    Xu, Wanfu
    Ding, Yan
    Lai, Mingqiang
    Lin, Xiaojun
    Dai, Meng
    Bai, Xiaochun
    Jia, Chunhong
    Zheng, Hang
    ONCOTARGET, 2017, 8 (34) : 56267 - 56280
  • [9] Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway
    Balta, Cornel
    Herman, Hildegard
    Boldura, Oana Maria
    Gasca, Ionela
    Rosu, Marcel
    Ardelean, Aurel
    Hermenean, Anca
    CHEMICO-BIOLOGICAL INTERACTIONS, 2015, 240 : 94 - 101
  • [10] REDD1 attenuates hepatic stellate cell activation and liver fibrosis via inhibiting of TGF-β/Smad signaling pathway
    Cho, Sam Seok
    Lee, Ji Hyun
    Kim, Kyu Min
    Park, Eun Young
    Ku, Sae Kwang
    Cho, Il Je
    Yang, Ji Hye
    Ki, Sung Hwan
    FREE RADICAL BIOLOGY AND MEDICINE, 2021, 176 : 246 - 256