The Exceptional Lie Algebra g2 is Generated by Three Generators Subject to Quadruple Relations

被引:0
|
作者
Stoilova, N. I. [1 ]
Van der Jeugt, J. [2 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, Ghent, Belgium
关键词
Lie algebra of G(2); generators and relations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short communication we show how the Lie algebra g(2) can easily be described as a free Lie algebra on 3 generators, subject to some simple quadruple relations for these generators. Mathematics Subject Classification: 17B25, 17B01.
引用
收藏
页码:1005 / 1008
页数:4
相关论文
共 50 条
  • [1] Indecomposable representations and oscillator realizations of the exceptional Lie algebra G2
    Hua-Jun Huang
    You-Ning Li
    Dong Ruan
    The European Physical Journal Plus, 128
  • [2] Indecomposable representations and oscillator realizations of the exceptional Lie algebra G2
    Huang, Hua-Jun
    Li, You-Ning
    Ruan, Dong
    EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (06):
  • [3] Intrinsic formulae for the Casimir operators of semidirect products of the exceptional Lie algebra G2 and a Heisenberg Lie algebra
    Campoamor-Stursberg, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (40): : 9451 - 9466
  • [4] Weight q-multiplicities for representations of the exceptional Lie algebra g2
    Cockerham, Jerrell
    Gonzalez, Melissa Gutierrez
    Harris, Pamela E.
    Loving, Marissa
    Minino, Amaury, V
    Rennie, Joseph
    Kirby, Gordon Rojas
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2020, 27 (05) : 641 - 662
  • [5] The nullcone of the Lie algebra of G2
    Hesselink, Wim H.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (04): : 623 - 648
  • [6] Notes on G2: The Lie algebra and the Lie group
    Draper Fontanals, Cristina
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 57 : 23 - 74
  • [7] Exact solution of a quantum integrable system associated with the G2 exceptional Lie algebra
    Li, Guang-Liang
    Cao, Junpeng
    Sun, Pei
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    NUCLEAR PHYSICS B, 2025, 1010
  • [8] FRAMING EXCEPTIONAL LIE GROUP G2
    WOOD, RMW
    TOPOLOGY, 1976, 15 (04) : 303 - 320
  • [10] Basic twist quantization of the exceptional Lie algebra g2 -: art. no. 103502
    Borowiec, A
    Lukierski, J
    Lyakhovsky, V
    Mozrzymas, M
    Tolstoy, VN
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (10)