Heat kernel estimate for the Laplace-Beltrami operator under Bakry-Émery Ricci curvature condition and applications

被引:0
|
作者
Song, Xingyu [1 ,2 ]
Wu, Ling [1 ,2 ]
Zhu, Meng [1 ,2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
Bakry-emery Ricci; Laplace-Beltrami operator; Heat kernel; Liouville theorem; Volume comparison; Eigenvalue estimate; METRIC-MEASURE-SPACES; LIOUVILLE THEOREMS; HARMONIC-FUNCTIONS; MANIFOLDS; UNIQUENESS; GEOMETRY; BOUNDS;
D O I
10.1016/j.geomphys.2023.104997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a Gaussian upper bound of the heat kernel for the Laplace-Beltrami operator on complete Riemannian manifolds with Bakry-emery Ricci curvature bounded below. As applications, we first prove an L1-Liouville property for non-negative subharmonic functions when the potential function of the Bakry-emery Ricci curvature tensor is of at most quadratic growth. Then we derive lower bounds of the eigenvalues of the Laplace -Beltrami operator on closed manifolds. An upper bound of the bottom spectrum is also obtained. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:28
相关论文
共 8 条
  • [1] Eigenvalue Estimates for Beltrami-Laplacian Under Bakry-Émery Ricci Curvature Condition
    Ling Wu
    XingYu Song
    Meng Zhu
    Potential Analysis, 2024, 60 : 597 - 614
  • [2] Heat Kernel Laplace-Beltrami Operator on Digital Surfaces
    Caissard, Thomas
    Coeurjolly, David
    Lachaud, Jacques-Olivier
    Roussillon, Tristan
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, DGCI 2017, 2017, 10502 : 241 - 253
  • [3] Some functional inequalities under lower Bakry-Émery-Ricci curvature bounds with ε-range
    Fujitani, Yasuaki
    MANUSCRIPTA MATHEMATICA, 2024, 175 (1-2) : 75 - 95
  • [4] TIME ANALYTICITY FOR THE HEAT EQUATION UNDER BAKRY-<acute accent>EMERY RICCI CURVATURE CONDITION
    Wu, Ling
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (06) : 1673 - 1685
  • [5] A remark on the Gaussian lower bound for the Neumann heat kernel of the Laplace-Beltrami operator
    Choulli, Mourad
    Kayser, Laurent
    SEMIGROUP FORUM, 2017, 94 (01) : 71 - 79
  • [6] Eigenvalue Estimates for Beltrami-Laplacian Under Bakry-emery Ricci Curvature Condition
    Wu, Ling
    Song, XingYu
    Zhu, Meng
    POTENTIAL ANALYSIS, 2024, 60 (02) : 597 - 614
  • [7] A novel cortical thickness estimation method based on volumetric Laplace-Beltrami operator and heat kernel
    Wang, Gang
    Zhang, Xiaofeng
    Su, Qingtang
    Shi, Jie
    Caselli, Richard J.
    Wang, Yalin
    MEDICAL IMAGE ANALYSIS, 2015, 22 (01) : 1 - 20
  • [8] EIGENVALUES OF THE LAPLACE-BELTRAMI OPERATOR UNDER THE HOMOGENEOUS NEUMANN CONDITION ON A LARGE ZONAL DOMAIN IN THE UNIT SPHERE
    Kabeya, Yoshitsugu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3529 - 3559