A new weighted fractional operator with respect to another function via a new modified generalized Mittag-Leffler law

被引:5
|
作者
Thabet, Sabri T. M. [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ,5 ]
Kedim, Imed [6 ]
Ayari, M. Iadh [7 ]
机构
[1] Univ Lahej, Radfan Univ Coll, Dept Math, Lahej, Yemen
[2] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Kyung Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul 02447, South Korea
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Garankuwa, Medusa, South Africa
[6] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Human Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[7] Carthage Univ, Inst Natl Sci Appliquee & Technol, Tunis, Tunisia
关键词
Fractional operator with the generalized Mittag-Leffler kernels; Nonsingular kernel; Weighted generalized Laplace transform;
D O I
10.1186/s13661-023-01790-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, new generalized weighted fractional derivatives with respect to another function are derived in the sense of Caputo and Riemann-Liouville involving a new modified version of a generalized Mittag-Leffler function with three parameters, as well as their corresponding fractional integrals. In addition, several new and existing operators of nonsingular kernels are obtained as special cases of our operator. Many important properties related to our new operator are introduced, such as a series version involving Riemann-Liouville fractional integrals, weighted Laplace transforms with respect to another function, etc. Finally, an example is given to illustrate the effectiveness of the new results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A new weighted fractional operator with respect to another function via a new modified generalized Mittag–Leffler law
    Sabri T. M. Thabet
    Thabet Abdeljawad
    Imed Kedim
    M. Iadh Ayari
    Boundary Value Problems, 2023
  • [2] A STUDY ON GENERALIZED MITTAG-LEFFLER FUNCTION VIA FRACTIONAL CALCULUS
    Gurjar, Meena Kumari
    Prajapati, Jyotindra C.
    Gupta, Kantesh
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2014, 5 (03): : 6 - 13
  • [3] New Computation of Unified Bounds via a More General Fractional Operator Using Generalized Mittag-Leffler Function in the Kernel
    Rashid, Saima
    Hammouch, Zakia
    Ashraf, Rehana
    Chu, Yu-Ming
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 126 (01): : 359 - 378
  • [4] New computation of unified bounds via a more general fractional operator using generalized mittag-leffler function in the kernel
    Rashid S.
    Hammouch Z.
    Ashraf R.
    Chu Y.-M.
    CMES - Computer Modeling in Engineering and Sciences, 2021, 126 (01): : 359 - 378
  • [5] On the generalized fractional integrals of the generalized Mittag-Leffler function
    Ahmed, Shakeel
    SPRINGERPLUS, 2014, 3
  • [6] Fractional Ostrowski Type Inequalities via Generalized Mittag-Leffler Function
    You, Xinghua
    Farid, Ghulam
    Maheen, Kahkashan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [7] Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel
    Srivastava, H. M.
    Tomovski, Zivorad
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) : 198 - 210
  • [8] Fractional modified Kawahara equation with Mittag-Leffler law
    Bhatter, Sanjay
    Mathur, Amit
    Kumar, Devendra
    Nisar, Kottakkaran Sooppy
    Singh, Jagdev
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [9] Some results on the generalized Mittag-Leffler function operator
    Prajapati, J. C.
    Jana, R. K.
    Saxena, R. K.
    Shukla, A. K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [10] Some results on the generalized Mittag-Leffler function operator
    JC Prajapati
    RK Jana
    RK Saxena
    AK Shukla
    Journal of Inequalities and Applications, 2013