Spherical Two-Distance Sets and Eigenvalues of Signed Graphs

被引:4
|
作者
Jiang, Zilin [1 ]
Tidor, Jonathan [2 ]
Yao, Yuan [3 ]
Zhang, Shengtong [2 ]
Zhao, Yufei [3 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
[2] Stanford Univ, Stanford, CA USA
[3] MIT, Cambridge, MA USA
关键词
Spherical two-distance set; Eigenvalue multiplicity; Signed graph; EQUIANGULAR LINES; BOUNDS; PROOF;
D O I
10.1007/s00493-023-00002-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of determining the maximum size of a spherical two-distance set with two fixed angles (one acute and one obtuse) in high dimensions. Let N-alpha,N- beta (d) denote the maximum number of unit vectors in R-d where all pairwise inner products lie in {alpha, beta}. For fixed -1 <= beta < 0 <= alpha < 1, we propose a conjecture for the limit of N-alpha,N- ss (d)/d as d -> infinity in terms of eigenvalue multiplicities of signed graphs. We determine this limit when alpha + 2 beta < 0 or (1 - alpha)/(alpha - beta) is an element of {1, root 2, root 3}. Our work builds on our recent resolution of the problem in the case of alpha = - beta (corresponding to equiangular lines). It is the first determination of lim d ->infinity N-alpha,N- beta (d)/d for any nontrivial fixed values of alpha and beta outside of the equiangular lines setting.
引用
下载
收藏
页码:203 / 232
页数:30
相关论文
共 50 条
  • [1] Spherical Two-Distance Sets and Eigenvalues of Signed Graphs
    Zilin Jiang
    Jonathan Tidor
    Yuan Yao
    Shengtong Zhang
    Yufei Zhao
    Combinatorica, 2023, 43 : 203 - 232
  • [2] Graphs and spherical two-distance sets
    Musin, Oleg R.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 311 - 325
  • [3] Spherical two-distance sets
    Musin, Oleg R.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (04) : 988 - 995
  • [4] On representations of graphs as two-distance sets
    Alfakih, A. Y.
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [5] New Bounds for Spherical Two-Distance Sets
    Barg, Alexander
    Yu, Wei-Hsuan
    EXPERIMENTAL MATHEMATICS, 2013, 22 (02) : 187 - 194
  • [6] NEW BOUNDS FOR EQUIANGULAR LINES AND SPHERICAL TWO-DISTANCE SETS
    Yu, Wei-Hsuan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 908 - 917
  • [7] Regular Two-Distance Sets
    Casazza, Peter G.
    Tran, Tin T.
    Tremain, Janet C.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (03)
  • [8] Regular Two-Distance Sets
    Peter G. Casazza
    Tin T. Tran
    Janet C. Tremain
    Journal of Fourier Analysis and Applications, 2020, 26
  • [9] The Two-Distance Sets in Dimension Four
    Szollosi, Ferenc
    DISCRETE AND COMPUTATIONAL GEOMETRY, GRAPHS, AND GAMES, JCDCGGG 2018, 2021, 13034 : 18 - 27
  • [10] New maximal two-distance sets
    Lisonek, P
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 77 (02) : 318 - 338