Tough PEGgels by In Situ Phase Separation for 4D Printing

被引:27
|
作者
Wang, Zhenwu [1 ]
Heck, Matthias [2 ]
Yang, Wenwu [3 ]
Wilhelm, Manfred [2 ]
Levkin, Pavel A. [1 ,4 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Biol & Chem Syst Funct Mol Syst IBCS FMS, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem ITCP, Kaiserstr 12, D-76131 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[4] Karlsruhe Inst Technol KIT, Inst Organ Chem IOC, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
3D printing; gel; PEGgel; phase separation; shape-memory; soft matter; HYDROGEL;
D O I
10.1002/adfm.202300947
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymer gels, consisting of cross-linked polymer network systems swollen by a solvent, show great potential in biomedicine, flexible electronics, and artificial muscles, due to their tissue-like mechanical properties. Due to the presence of a large amount of solvent, the improvement of the mechanical properties of the polymer gel is a challenge. Moreover, combining high toughness with useful properties, such as 3D printability or shape-memory, in one polymer gel system is even more challenging. In this study, a simple and efficient method is developed for the fabrication of tough polymer gels by polymerizing 2-hydroxyethyl methacrylate (HEMA) in a mixture of poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG). The polymerized elastic networkpresents distinct compatibility with PEG (compatible) and PPG (poorly compatible), resulting in in-situ phase separation at the microscale. The resulting phase-separated gel demonstrates high strength (8.0 MPa), favorable fracture strain (430%), and large toughness (17.0 MJ m(-3)). The separated hard phasewith a high glass transition temperature (75 degrees C) endows the whole soft polymer gel with the property of shape memory at room temperature. Finally, the fabrication of tunable tough PEGgels is combined with 3D printing as well as with shape memory properties, demonstrating the use of PEGgels for 4D printing.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Phase field topology optimisation for 4D printing*
    Garcke, Harald
    Lam, Kei Fong
    Nurnberg, Robert
    Signori, Andrea
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [2] Tough and stretchable ionogels by in situ phase separation
    Meixiang Wang
    Pengyao Zhang
    Mohammad Shamsi
    Jacob L. Thelen
    Wen Qian
    Vi Khanh Truong
    Jinwoo Ma
    Jian Hu
    Michael D. Dickey
    Nature Materials, 2022, 21 : 359 - 365
  • [3] Tough and stretchable ionogels by in situ phase separation
    Wang, Meixiang
    Zhang, Pengyao
    Shamsi, Mohammad
    Thelen, Jacob L.
    Qian, Wen
    Vi Khanh Truong
    Ma, Jinwoo
    Hu, Jian
    Dickey, Michael D.
    NATURE MATERIALS, 2022, 21 (03) : 359 - +
  • [4] Biomimetic 4D printing
    Sydney Gladman A.
    Matsumoto E.A.
    Nuzzo R.G.
    Mahadevan L.
    Lewis J.A.
    Nature Materials, 2016, 15 (4) : 413 - 418
  • [5] 4D printing and robotics
    de Marco, Carmela
    Pane, Salvador
    Nelson, Bradley J.
    SCIENCE ROBOTICS, 2018, 3 (18)
  • [6] THE PATH TO 4D PRINTING
    不详
    ADVANCED MATERIALS & PROCESSES, 2020, 178 (05): : 80 - 80
  • [7] A review of 4D printing
    Momeni, Farhang
    Hassani, Seyed M. Mehdi N.
    Liu, Xun
    Ni, Jun
    MATERIALS & DESIGN, 2017, 122 : 42 - 79
  • [8] Application of phase change materials in 4D printing: A review
    Mehta, Parth
    Sahlot, Pankaj
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 4746 - 4752
  • [9] Progress on 4D Printing
    Liu H.
    He H.
    Jia Y.
    Huang B.
    Peng X.
    Geng Y.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2019, 35 (07): : 175 - 181
  • [10] Laws of 4D Printing
    Momeni, Farhang
    Ni, Jun
    ENGINEERING, 2020, 6 (09) : 1035 - 1055