Strongly invertible knots, equivariant slice genera, and an equivariant algebraic concordance group

被引:1
|
作者
Miller, Allison N. [1 ]
Powell, Mark [2 ]
机构
[1] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA USA
[2] Univ Glasgow, Sch Math & Stat, Glasgow, Scotland
基金
英国工程与自然科学研究理事会;
关键词
BLANCHFIELD PAIRINGS; TRANSFORMATIONS; FORMS; ORDER;
D O I
10.1112/jlms.12732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Blanchfield form to obtain a lower bound on the equivariant slice genus of a strongly invertible knot. For our main application, let K be a strongly invertible genus one slice knot with nontrivial Alexander polynomial. We show that the equivariant slice genus of an equivariant connected sum #K-n is at least n/4. We also formulate an equivariant algebraic concordance group, and show that the kernel of the forgetful map to the classical algebraic concordance group is infinite rank.
引用
收藏
页码:2025 / 2053
页数:29
相关论文
共 16 条