We use the Blanchfield form to obtain a lower bound on the equivariant slice genus of a strongly invertible knot. For our main application, let K be a strongly invertible genus one slice knot with nontrivial Alexander polynomial. We show that the equivariant slice genus of an equivariant connected sum #K-n is at least n/4. We also formulate an equivariant algebraic concordance group, and show that the kernel of the forgetful map to the classical algebraic concordance group is infinite rank.
机构:
Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Boyle, Keegan
Chen, Wenzhao
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada