Real-time adaptive entry trajectory generation with modular policy and deep reinforcement learning

被引:2
|
作者
Peng, Gaoxiang
Wang, Bo
Liu, Lei
Fan, Huijin
Cheng, Zhongtao
机构
关键词
Entry trajectory; Adaptability; Modularization; Deep reinforcement learning; Real-time; Discretization; ONBOARD GENERATION; GUIDANCE; OPTIMIZATION; CONSTRAINTS; VEHICLES;
D O I
10.1016/j.ast.2023.108594
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Recently, data-driven entry trajectory generation algorithms of hypersonic vehicles were highlighted for their high accuracy with low computational costs. Learning a unique black box model mapping the state to control variables is expected. However, insufficient adaptability remains a challenging problem when applying the algorithms in practice, especially for multi-missions. In this article, a real-time entry trajectory generation algorithm with modular policy is proposed to achieve adaptability to various missions, such as changing targets and emergency entry. Based on the modular idea, the entry trajectory problem is decomposed into two decision problems, i.e., adjusting the profile of the angle of attack (AOA) to determine the flight capability and planning the bank angle to ensure the satisfaction of task constraints, which correspond to AOA module and bank module respectively. Then, algorithms are developed by utilizing deep reinforcement learning (DRL) to train the two modules with which an intelligent entry trajectory generation algorithm is proposed to achieve real-time trajectory design in a wide range of reachable areas. Moreover, a non-uniform discretization approach with a state-related independent variable is proposed to deal with state misalignment and contradiction in stepsize settings. The simulation results demonstrate that the proposed algorithm can provide a reliable trajectory in a very short time and adapt to various tasks.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Real-Time Trajectory Planning in UAV Networks
    Li, Kai
    Ni, Wei
    Tovar, Eduardo
    Guizani, Mohsen
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 958 - 963
  • [2] Developing Real-Time Scheduling Policy by Deep Reinforcement Learning
    Bo, Zitong
    Qiao, Ying
    Leng, Chang
    Wang, Hongan
    Guo, Chaoping
    Zhang, Shaohui
    2021 IEEE 27TH REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS 2021), 2021, : 131 - 142
  • [3] Real-Time Trajectory Adaptation for Quadrupedal Locomotion using Deep Reinforcement Learning
    Gangapurwala, Siddhant
    Geisert, Mathieu
    Orsolino, Romeo
    Fallon, Maurice
    Havoutis, Ioannis
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5973 - 5979
  • [4] Deep reinforcement learning based trajectory real-time planning for hypersonic gliding vehicles
    Li, Jianfeng
    Song, Shenmin
    Shi, Xiaoping
    Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2024, 238 (16) : 1665 - 1682
  • [5] A Deep Reinforcement Learning Based Real-Time Solution Policy for the Traveling Salesman Problem
    Ling, Zhengxuan
    Zhang, Yu
    Chen, Xi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 5871 - 5882
  • [6] Real-time model calibration with deep reinforcement learning
    Tian, Yuan
    Chao, Manuel Arias
    Kulkarni, Chetan
    Goebel, Kai
    Fink, Olga
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 165
  • [7] Integration of Adaptive Control and Reinforcement Learning for Real-Time Control and Learning
    Annaswamy, Anuradha M.
    Guha, Anubhav
    Cui, Yingnan
    Tang, Sunbochen
    Fisher, Peter A.
    Gaudio, Joseph E.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 7740 - 7755
  • [8] Learning to Calibrate Battery Models in Real-Time with Deep Reinforcement Learning
    Unagar, Ajaykumar
    Tian, Yuan
    Chao, Manuel Arias
    Fink, Olga
    ENERGIES, 2021, 14 (05)
  • [9] Real-time Hand Movement Trajectory Tracking with Deep Learning
    Wang, Po-Tong
    Sheu, Jia-Shing
    Shen, Chih-Fang
    SENSORS AND MATERIALS, 2023, 35 (12) : 4117 - 4129
  • [10] Deep Reinforcement Learning for Sponsored Search Real-time Bidding
    Zhao, Jun
    Qiu, Guang
    Guan, Ziyu
    Zhao, Wei
    He, Xiaofei
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1021 - 1030