Autonomous Decision-Making for Aerobraking via Parallel Randomized Deep Reinforcement Learning

被引:5
|
作者
Falcone, Giusy [1 ,3 ]
Putnam, Zachary R. R. [2 ]
机构
[1] Univ Illinois, Champaign, IL 61801 USA
[2] Univ Illinois, Dept Aerosp Engn, Champaign, IL 61801 USA
[3] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
关键词
Space vehicles; Planetary orbits; Mars; Decision making; Computer architecture; Atmospheric modeling; Reinforcement learning; Aerobraking; deep reinforcement learning (DRL); domain randomization; ACCELEROMETER DATA; MARS; MISSION; COST;
D O I
10.1109/TAES.2022.3221697
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Aerobraking is used to insert a spacecraft into a low orbit around a planet through many orbital passages into its complex atmosphere. The aerobraking atmospheric passages are challenging because of the high variability of the atmospheric environment. This paper develops a parallel domain randomized deep reinforcement learning architecture for autonomous decision-making in a stochastic environment, such as aerobraking atmospheric passages. In this context, the architecture is used for planning aerobraking maneuvers to avoid the occurrence of thermal violations during the atmospheric aerobraking passages and target a final low-altitude orbit. The parallel domain randomized deep reinforcement learning architecture is designed to account for large variability of the physical model, as well as uncertain conditions. Also, the parallel approach speeds up the training process for simulation-based applications, and domain randomization improves resultant policy generalization. This framework is applied to the 2001 Mars Odyssey aerobraking campaign; with respect to the 2001 Mars Odyssey mission flight data and a Numerical Predictor Corrector (NPC)-based state-of-the-art heuristic for autonomous aerobraking, the proposed architecture outperforms the state-of-the-art heuristic algorithm with a decrease of 97.5% in the number of thermal violations. Furthermore, it yields a reduction of 98.7% in the number of thermal violations with respect to the Mars Odyssey mission flight data and requires 13.9% fewer orbits. Results also show that the proposed architecture can also learn a generalized policy in the presence of strong uncertainties, such as aggressive atmospheric density perturbations, different atmospheric density models, and a different simulator maximum step size and error accuracy.
引用
收藏
页码:3055 / 3070
页数:16
相关论文
共 50 条
  • [1] A Decision-Making Strategy for Vehicle Autonomous Braking in Emergency via Deep Reinforcement Learning
    Fu, Yuchuan
    Li, Changle
    Yu, Fei Richard
    Luan, Tom H.
    Zhang, Yao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (06) : 5876 - 5888
  • [2] Robust decision-making for autonomous vehicles via deep reinforcement learning and expert guidanceRobust decision-making for autonomous vehicles via deep reinforcement...F.-J. Li et al.
    Feng-Jie Li
    Chun-Yang Zhang
    C. L. Philip Chen
    Applied Intelligence, 2025, 55 (6)
  • [3] Research on Autonomous Decision-Making of UCAV Based on Deep Reinforcement Learning
    Wang, Linxiang
    Wei, Hongtao
    2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 122 - 126
  • [4] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Guofa Li
    Shenglong Li
    Shen Li
    Yechen Qin
    Dongpu Cao
    Xingda Qu
    Bo Cheng
    Automotive Innovation, 2020, 3 : 374 - 385
  • [5] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Li, Guofa
    Li, Shenglong
    Li, Shen
    Qin, Yechen
    Cao, Dongpu
    Qu, Xingda
    Cheng, Bo
    AUTOMOTIVE INNOVATION, 2020, 3 (04) : 374 - 385
  • [6] Decision-Making in Fallback Scenarios for Autonomous Vehicles: Deep Reinforcement Learning Approach
    Lee, Cheonghwa
    An, Dawn
    APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [7] Decision-Making Strategy on Highway for Autonomous Vehicles Using Deep Reinforcement Learning
    Liao, Jiangdong
    Liu, Teng
    Tang, Xiaolin
    Mu, Xingyu
    Huang, Bing
    Cao, Dongpu
    IEEE ACCESS, 2020, 8 (08): : 177804 - 177814
  • [8] A Deep Reinforcement Learning Decision-Making Approach for Adaptive Cruise Control in Autonomous Vehicles
    Ghraizi, Dany
    Talj, Reine
    Francis, Clovis
    2023 21ST INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, ICAR, 2023, : 71 - 78
  • [9] A UAV Maneuver Decision-Making Algorithm for Autonomous Airdrop Based on Deep Reinforcement Learning
    Li, Ke
    Zhang, Kun
    Zhang, Zhenchong
    Liu, Zekun
    Hua, Shuai
    He, Jianliang
    SENSORS, 2021, 21 (06)
  • [10] Knowledge-Embedded Deep Reinforcement Learning for Autonomous Network Decision-Making Algorithm
    Zhang, Yalin
    Gao, Hui
    Su, Xin
    Liu, Bei
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,