Vanishing viscosity in mean-field optimal control

被引:4
|
作者
Ciampa, Gennaro [1 ]
Rossi, Francesco [2 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enr, Via Cesare Saldini 50, I-20133 Milan, Italy
[2] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35131 Padua, Italy
基金
欧洲研究理事会;
关键词
Mean-field equations; optimal control of partial differential equations; vanishing viscosity; STOCHASTIC DIFFERENTIAL-EQUATIONS; CONTINUITY EQUATION; WASSERSTEIN SPACES; VELOCITY; LIMIT;
D O I
10.1051/cocv/2023024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show the existence of Lipschitz-in-space optimal controls for a class of mean-field control problems with dynamics given by a non-local continuity equation. The proof relies on a vanishing viscosity method: we prove the convergence of the same problem where a diffusion term is added, with a small viscosity parameter.By using stochastic optimal control, we first show the existence of a sequence of optimal controls for the problem with diffusion. We then build the optimizer of the original problem by letting the viscosity parameter go to zero.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Vanishing viscosity for linear-quadratic mean-field control problems
    Ciampa, Gennaro
    Rossi, Francesco
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 185 - 190
  • [2] MEAN-FIELD OPTIMAL CONTROL
    Fornasier, Massimo
    Solombrino, Francesco
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (04) : 1123 - 1152
  • [3] Mean-field sparse optimal control
    Fornasier, Massimo
    Piccoli, Benedetto
    Rossi, Francesco
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2028):
  • [4] Mean-field FBSDE and optimal control
    Agram, Nacira
    Choutri, Salah Eddine
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (02) : 235 - 251
  • [5] Mean-field Optimal Control by Leaders
    Fornasier, Massimo
    Piccoli, Benedetto
    Duteil, Nastassia Pouradier
    Rossi, Francesco
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 6957 - 6962
  • [6] Mean-field optimal control for biological pattern formation
    Burger, Martin
    Kreusser, Lisa Maria
    Totzeck, Claudia
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [7] A mean-field optimal control formulation of deep learning
    Weinan E
    Jiequn Han
    Qianxiao Li
    Research in the Mathematical Sciences, 2019, 6
  • [8] The turnpike property for mean-field optimal control problems
    Gugat, Martin
    Herty, Michael
    Segala, Chiara
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2024,
  • [9] A Mean-Field Optimal Control Formulation for Global Optimization
    Zhang, Chi
    Taghvaei, Amirhossein
    Mehta, Prashant G.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (01) : 282 - 289
  • [10] A mean-field optimal control formulation of deep learning
    E, Weinan
    Han, Jiequn
    Li, Qianxiao
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2019, 6 (01)