Counting roots of fully triangular polynomials over finite fields

被引:0
|
作者
Coelho, Jose Gustavo
Martinez, Fabio Enrique Brochero
机构
关键词
Triangular polynomials; Degree matrix; Augmented degree matrix; equation;
D O I
10.1016/j.ffa.2023.102345
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Fq be a finite field with q elements, f is an element of Fq[x1, ... , xn] a polynomial in n variables and let us denote by N(f) the number of roots of f in F(q)n. In this paper we consider the family of fully triangular polynomials, i.e., polynomials of the form f(x1,...,xn)=a1xd1,11+a2xd1,21xd2,22+<middle dot><middle dot><middle dot>+anxd1,n1<middle dot><middle dot><middle dot>xdn,n n-b, where di,j > 0 for all 1 < i < j < n. For these polynomials, we obtain explicit formulas for N(f) when the augmented degree matrix of f is row-equivalent to the augmented degree matrix of a linear polynomial or a quadratic diagonal polynomial.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ON COUNTING POLYNOMIALS OVER FINITE FIELDS
    Chuang, Chih-Yun
    Kuan, Yen-Liang
    Yu, Jing
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) : 4305 - 4316
  • [2] Counting irreducible polynomials over finite fields
    Qichun Wang
    Haibin Kan
    Czechoslovak Mathematical Journal, 2010, 60 : 881 - 886
  • [3] COUNTING IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS
    Wang, Qichun
    Kan, Haibin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 881 - 886
  • [4] Roots of certain polynomials over finite fields
    Ding, Zhiguo
    Zieve, Michael E.
    JOURNAL OF NUMBER THEORY, 2023, 252 : 157 - 176
  • [5] Finding roots of polynomials over finite fields
    Fedorenko, SV
    Trifonov, PV
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (11) : 1709 - 1711
  • [6] Roots and coefficients of polynomials over finite fields
    Kopparty, Swastik
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 29 : 198 - 201
  • [7] Additive polynomials and primitive roots over finite fields
    Özbudak, F
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (03) : 987 - 991
  • [8] Roots and coefficients of multivariate polynomials over finite fields
    Geil, Olav
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 : 36 - 44
  • [9] Equivariant Poincare polynomials and counting points over finite fields
    Kisin, M
    Lehrer, GI
    JOURNAL OF ALGEBRA, 2002, 247 (02) : 435 - 451
  • [10] Counting polynomials over finite fields with given root multiplicities
    Almousa, Ayah
    Wood, Melanie Matchett
    JOURNAL OF NUMBER THEORY, 2014, 136 : 394 - 402