Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios

被引:3
|
作者
Qi, Feng [1 ]
Yao, Yong -Hong [2 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Peoples R China
[2] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
来源
关键词
Dirichlet beta function; Euler number; increasing property; logarithmic convexity; ratio; integral representation;
D O I
10.15672/hujms.1099250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, by virtue of an integral representation of the Dirichlet beta function, with the aid of a relation between the Dirichlet beta function and the Euler numbers, and by means of a monotonicity rule for the ratio of two definite integrals with a parameter, the author finds increasing property and logarithmic convexity of two functions and two sequences involving the Dirichlet beta function, the Euler numbers, and their ratios.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 10 条
  • [1] Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios
    Ye Shuang
    Bai-Ni Guo
    Feng Qi
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [2] Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios
    Shuang, Ye
    Guo, Bai-Ni
    Qi, Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [3] Increasing property and logarithmic convexity of functions involving Dirichlet lambda function
    Qi, Feng
    Lim, Dongkyu
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [4] INCREASING PROPERTY AND LOGARITOC CONVEXITY OF TWO FUNCTIONS INVOLVING DIRICHLET ETA FUNCTION
    Lim, Dongkyu
    Qi, Feng
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 463 - 469
  • [5] A convexity property and a new characterization of Euler’s gamma function
    Horst Alzer
    Janusz Matkowski
    Archiv der Mathematik, 2013, 100 : 131 - 137
  • [6] Algebraic differential independence concerning the Euler Γ-function and Dirichlet series
    Chen, Wei
    Wang, Qiong
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (04) : 1035 - 1044
  • [7] Algebraic differential independence concerning the Euler Γ-function and Dirichlet series
    Wei Chen
    Qiong Wang
    Acta Mathematica Scientia, 2020, 40 : 1035 - 1044
  • [8] A convexity property and a new characterization of Euler's gamma function
    Alzer, Horst
    Matkowski, Janusz
    ARCHIV DER MATHEMATIK, 2013, 100 (02) : 131 - 137
  • [9] ALGEBRAIC DIFFERENTIAL INDEPENDENCE CONCERNING THE EULER Γ-FUNCTION AND DIRICHLET SERIES
    陈玮
    王琼
    ActaMathematicaScientia, 2020, 40 (04) : 1035 - 1044
  • [10] CERTAIN RESULTS CONCERNING (p, q)-PARAMETERIZED BETA LOGARITHMIC FUNCTION AND THEIR PROPERTIES
    Khan, Nabiullah
    Khan, Mohammad Iqbal
    Saif, Mohd
    Usman, Talha
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (02): : 306 - 318